# SPATIOTEMPORAL ATTENTION BASED DEEP NEURAL NETWORKS FOR EMOTION RECOGNITION



Jiyoung Lee, Sunok Kim, Seungryong Kim, and Kwanghoon Sohn School of Electrical and Electronic Engineering, Yonsei University, Korea {easy00, kso428, srkim89, khsohn}@yonsei.ac.kr



#### Introduction

#### Goal

 This paper describes recognizing dimensional emotion based spatiotemporal attention method via convolutional neural networks.

#### Motivations

- Cost aggregation step is required to regularize matching costs from neighboring pixels with an explicit kernel function.
- Most existing cost aggregation methods optimally design the edge-aware weights in a hand-crafted manner.
- Example, (4-type of surprise)



- Categorical emotion cannot cover full range of emotion
- mouth (red box) and eye (green box), which are emotional sailent parts within facial videos is essential for recognizing emotion robustly.

## The key aspect of the proposed method

- 1) Extracting the features of each frame with spatial associations using 2D-CNNs
- Estimating spatiotemporal attention of the video using Convolutional LSTM (ConvLSTM)
- The dimensional emotions of each frame are estimated by leveraging 3D-CNNs to encode both appearance and motion information simultaneously



#### **Spatiotemporal Attention Network**

 $\rightarrow$  Spatial Encoder

**Proposed Method** 

- To take spatial correlation into consideration, we propose the feature encoder of 2D-CNNs
- $\rightarrow$  <u>Temporal Decoder</u>
- Utilizing ConvLSTM modules that encode the temporal correlation across inter-frames while preserving the spatial structure over sequences.
- → Spatiotemporal Attention Inference
- Soft attention manner : attention is multiplied to 3D convolutional feature activations.

$$X^{\prime\prime} = A \odot X$$

## **Emotion Recognition Network**

- Estimate a dimensional emotion for the facial video by leveraging the spatiotemporal attention
- Employ 3D-CNNs to deal with temporal information, which simultaneously consider spatial and temporal correlations across the attention-boosted features X'' and directly regress the emotion.

## **Experimental Results**

#### **Quantative Results**

| Component-wise analysis |                       |     |            |         | • Evaluation on AV+EC`17                |       |       |       |
|-------------------------|-----------------------|-----|------------|---------|-----------------------------------------|-------|-------|-------|
| 2D-CNN                  | 3D-CNN                | STA | RMSE CC    | CCC     | Method                                  | RMSE  | CC    | CCC   |
| ~                       |                       |     | 0.113 0.42 | 6 0.326 | Baseline [31]                           | -     | -     | 0.400 |
|                         | 1                     |     | 0.104 0.51 | 0 0.493 | CNN [1]                                 | 0.114 | 0.564 | 0.528 |
|                         | <ul> <li>✓</li> </ul> | ~   | 0.102 0.57 | 2 0.546 | CNN + RNN (≈ 4 sec.) [1]                | 0.104 | 0.616 | 0.588 |
|                         |                       |     |            |         | $3D-CNN + STA (\approx 4 \text{ sec.})$ | 0.099 | 0.638 | 0.612 |

#### **Evaluation on RECOLA**

| Method                                                 | RMSE  | CC    | CCC   |
|--------------------------------------------------------|-------|-------|-------|
| Baseline [26]                                          | 0.117 | 0.358 | 0.273 |
| CNN [1]                                                | 0.113 | 0.426 | 0.326 |
| CNN + RNN (≈ 1 sec.) [1]                               | 0.111 | 0.501 | 0.474 |
| $\text{CNN} + \text{RNN} (\approx 4 \text{ sec.}) [1]$ | 0.108 | 0.544 | 0.506 |
| LGBP-TOP + LSTM [29]                                   | 0.114 | 0.430 | 0.354 |
| LGBP-TOP + Bi-Dir. LSTM [15]                           | 0.105 | 0.501 | 0.346 |
| LGBP-TOP + LSTM + $\epsilon$ -loss [30]                | 0.121 | 0.488 | 0.463 |
| $CNN + LSTM + \epsilon$ -loss [30]                     | 0.116 | 0.561 | 0.538 |
| $3D-CNN + STA (\approx 4 \text{ sec.})$                | 0.102 | 0.572 | 0.546 |



ground trut

## • Estimated graph on RECOLA





Visualization of attention

# Conclusion

- Propose dimensional emotion recognition framework that lever- ages the spatiotemporal attention of video frames.
- Consider only spatial appearance and temporal motion for the facial video sequence simultaneously using 3D-CNNs.