SPATIOTEMPORAL ATTENTION BASED DEEP NEURAL NETWORKS FOR EMOTION RECOGNITION
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* mouth (red box) and eye (green box), which are emotional - Spatiotemporal Attention Inference 3
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1) Extracting the features of each frame with spatial
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associations using 2D-CNNs

* Estimate a dimensional emotion for the facial video by Conclusion

leveraging the spatiotemporal attention .

2) Estimating spatiotemporal attention of the video using

Convolutional LSTM (ConvLSTM) Propose dimensional emotion recognition framework that lever- ages the

] ) ) ) * Employ 3D-CNNs to deal with temporal information, which spatiotemporal attention of video frames.
3) The dimensional emotions of each frame are estimated by simultaneously consider spatial and temporal correlations + Consider only spatial appearance and temporal motion for the facial video
leveraging 3D-CNNs to encode both appearance and across the attention-boosted features X'’ and directly regress sequence simultaneously using 3D-CNNSs.
motion information simultaneously the emotion.



