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Contributions

Result: Subspace projection
- in a decentralized fashion
- in a finite number of iterations.

Novelty: Based on Graph filters
- finds valid shift matrix when it exists and
- is the one that approximately minimizes order
→ number of communications between nodes.

Subspace projection example
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Problem formulation

A graph G(V, E) is considered
- V = {v1, . . . , vN} represent N sensors
- edge (vn, vn′) iff sensors communicate.
- self loops (vn, vn) ∈ E , n = 1, . . . , N included.

A is the adjacency matrix:
- (A)n,n′ = 1 if (vn, vn′) ∈ E
- (A)n,n′ = 0 otherwise.

Goal: estimate signal vector x ∈ RN from obser-
vation vector z = [z1, . . . , zN ]T = x+ ζ
- zn ∈ R denotes observation of node vn ∈ V
- ζ ∈ RN stands for additive noise.

Knowledge: x is known to lie in the subspace
spanned by U‖ ∈ RN×r, where r < N ;
→ x = U‖α for some α ∈ Rr.

Problem: find x̂ , [x̂1, . . . , x̂N ]T = U‖UT
‖ z , Pz

given z and U‖ in a decentralized fashion.

Motivation

Least squares estimation, denoising, weighted consensus, and distributed detection, can be
cast as subspace projection.

Robustness, scalability, and energy consumption motivate decentralized algorithms.

Existing approaches:

(i) Only converges asymptotically to desired result or
(ii) Do not provide shift matrix and do not consider number of steps to converge.

Proposed methodology

Previous work: have shown that a graph filter allows decentralized implementation.
Problem reduced to: find a graph filter H := c0I+

∑L−1
l=1 clS

l such that Pz = Hz, ∀z.

Our solution: find shift matrix S and filter coefficients cl that ensure L nearly minimal.

First step: characterize set of feasible shift matrices

S =
{
S ∈ RN×N : S = ST , (S)n,n′ = 0 if (vn, vn′) 6∈ E ,

∃c = [c0, ..., cN−1]
T satisfying U‖U

T
‖ = c0I+

N−1∑
l=1

clS
l
}

Key point 1: Matrices in S can be expressed as S = S‖ + S⊥

- S⊥ is a symmetric matrix satisying ST
⊥U‖ = 0

- S‖ = U‖FUT
‖ for some symmetric F ∈ Rr×r.

Second step: Ensure L is nearly minimal

- Requirement: Given a minimal L, filter Hz = Pz ∀z must exist.

- Initial result: Minimal L equals the number of different eigenvalues of F plus S⊥.

- Difficulty: finding F and S⊥minimizing number of different eigenvalues is non-convex.

Key point 2: convex surrogate for objective. Similar to `1-norm replacing zero norm.

Solution: convex problem:

minimize
F,S,S‖,S⊥

||F⊗ I− I⊗ F||? + ||S⊥ ⊗ I− I⊗ S⊥||?

s. t. (S)n,n′ = 0 if (vn, vn′) 6∈ E , n, n′ = 1, ...., N
S = S‖ + S⊥, S⊥ = ST

⊥, S‖ = ST
‖, S‖ = U‖FUT

‖ , ST
⊥U‖ = 0,

tr(F) = r, tr(S⊥) ≤ N − r − ε

ε > 0 is small positive constant and last two constraints needed to avoid trivial solutions.

Numerical Results
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Setting: Monte Carlo simulation.
- Topology E and matrix U‖ random.
- N = 25, r = [5, 10].

What is compared: error ||y −Pz||2
- exact and approximate solutions vs
- fastest asymptotic method [1].

Error definition:
- For two objectives proposed

E(k) = EA,z||
k∑

l=0

c
(k)
l Slz−Pz||2

- For approach in [1]

E(k) = EA,z||Wkz−Pz||2

Conclusion: Proposed shifts converge to desired projection
in nearly minimal number of steps, outperforming [1].

[1] S. Barbarossa et al. Distributed signal subspace projection al-
gorithms with maximum convergence rate for sensor networks with
topological constraints. ICASSP 2009.
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