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Motivation Framework
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The prediction of pixel x; is performed as follows:

A o Volume of LV: (a) ED, (b) ES. From left to right in (a) and (b):
Yi = argmax[p(z; = ¢;) DCM (1-20), HCM (21-40), MINF (41-60), NOR (61-80), and
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Segmentation results from different patients.
Cyan: LV cavity. Green: Myocardium. Red: RV cavity. Yellow lines: Ground truth.
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