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Objectives

Covariance Matrix (CM):
• plays a central role in adaptive signal processing ⇒ CM estimation
• generally exhibits a specific structure (e.g. Toeplitz for ULA)
Structured CM estimation:
•Gaussian context: COvariance Matching Estimation Technique [1]
• t-distribution framework: used as heavy-tailed model

• normalizing the data: RCOMET [2], COCA [3], Constrained Tyler [4]
• taking into account the texture → still an open problem

The purposes of this work consist in:
• proposing a new estimation procedure, for t-distributed data with a
convexly structured CM matrix.

• studying the asymptotic performance: consistency, normality and
efficiency.

Problem setup

N i.i.d. t-distributed data, yn ∼ Ctm,d (0, R), n = 1, . . . , N [5]:
• yn ∈ Cm with N > m

• d degrees of freedom assumed known

Scatter matrix R
• belongs to S , a convex subset of Hermitian positive-definite matrices
• there exists a one-to-one differentiable mapping µ 7→ R(µ) from RP to S
Unknown interest parameter: µ ∈ Rp, with exact value µe
Maximum Likelihood Estimator (MLE) of µ
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Let be y ∼ Ctm,d (0, R(µe)), with µe ∈ RP . The FIM is expressed by [6]
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where ∂r(µ)
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refers to the Jacobian matrix of r(µ) = vec (R(µ)),
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Main results

Proposed algorithm

• Step 1: unstructured MLE of R

The unstructured MLE, R̂, is the solution of the fixed point equation:

R̂ = d + m
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Existence and uniqueness of this solution, convergence of the iterative al-
gorithm Rk+1 = HN(Rk) to R̂ for any initialization and consistency of
R̂ are ensured [5].
• Step 2: Estimation of µ

The minimization of the following criterion w.r.t µ

µ̂ = argmin
µ

(r̂− r(µ))H Ŷ (r̂− r(µ)) (3)

with Ŷ = (d + m)Ŵ−1 − vec
(
R̂−1) vec

(
R̂−1)H

and Ŵ = R̂T ⊗ R̂
yields a unique solution µ̂ for µ.

Asymptotic analysis
µ̂, obtained by (3), is consistent, asymptotically Gaussian and efficient:

√
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Numerical results

Simulation settings:
• m = 4, d = 5, 5000 sets of N i.i.d. yn ∼ Ctm,d (0, Re), n = 1, . . . , N .
• Re , R(µe) is Hermitian Toeplitz, µe is a real-valued vector containing
the real and imaginary parts of the first row of Re.

Comparison of the performance with the state of the art:

•Proposed algorithm with unstructured ML, R̂ as step 1
•Proposed algorithm with joint estimation of d and R [7] as step 1

⇒ to deal with the possibility of unknown parameter d

•RCOMET [2] and COCA [3] based on zn = yn/‖yn‖
•Projection onto the Toeplitz set by averaging the diagonals of R̂

Conclusion

In this paper, we addressed structured covariance estimation for convex struc-
tures. A consistent, asymptotically unbiased and efficient estimator is pro-
posed for t-distribution. A generalization for any Complex Elliptically Sym-
metric distributions is studied in [8]. Numerical simulations confirm the the-
oretical analysis and the practical interest of this approach.
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