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Introduction
Opportunity: Recent advances in signal processing have highlighted demands for
enhanced dealing with complex-valued data.
Challenges: The issues in processing such data include:

• Noncircularity: Real-world complex signals are often noncircular (rotation-
dependent pdf). This can be accounted for by widely linear modeling,
which caters for the full available second-order statistics.

• Streaming Data: Processing large data sets with block-based algorithms
can be computationally prohibitive. To this end, online algorithms have
proven effective and cater for non-stationary statistics.

• Outliers: Mean square error (MSE) based algorithms are sensitive to out-
liers. Robust cost functions such as Maximum Complex Correntropy
Criterion (MCCC) have proven effective in the presence of outliers, and
cater for impulsive non-Gaussian environments.

The standard MCCC cost function assumes second-order circular (proper) esti-
mation error and we here introduce a new, more comprehensive, definition
of complex correntropy to address the above challenges.

=⇒ The proposed Maximum Improper Complex Correntropy Criterion
(MICCC) offers robust estimation for streaming noncircular data with non-
stationary statistics in impulsive non-Gaussian environments.

Background – Correntropy as a cost function

Filtering: Estimate the output, y ∈ R, from the input vector, x ∈ RN , through
a linear model given by

y = wTx (1)

The MSE-based Wiener solution has the form

wWiener = E
{
xxT

}−1
E {xy} (2)

Problem: If the input x contains outliers → the Wiener solution is unreliable.
Maximum Correntropy Criterion (MCC): The MCC counteracts the sensitivity
to outliers by interpreting the filtering problem as the estimation of the probability
of the event y = wTx. Using the Gaussian pdf, κ(·), the optimum filter weights
are derived by maximizing the probability of estimation error, e = y −wTx,

max
w

E {κ(e)} = 1√
2πσ2

E

{
exp

[
− |e|

2

2σ2

]}
(3)

The MCC-Wiener-based estimation solution then becomes

wMCC = E
{
κ(e)xxT

}−1
E {κ(e)xy} (4)

which is straightforwardly calculated using an appropriate Parzen window.
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Figure 1: Robustness to outliers of MCC (left
panel) vs. MSE (right panel).

The maximization of the MCC
attenuates the influence of
outliers, whereas the mini-
mization of the MSE ampli-
fies the sensitivity to outliers.

MICCC-based stochastic gradient adaptive filter
MICCC: A complex correntropy-based cost function suitable for noncircularly
distributed errors is introduced as an extension to the work in [1]. For an im-
proper complex random variable, e = [e1, ..., eN ]T ∈ CN , the complex correntropy
is estimated through an appropriate Parzen estimator, given by

E{κσ,%(e)} =
1

πσ2
√

1− |%|2
1

N

N∑
n=1

exp

[
−|en|

2 −<{%e∗2n }
σ2(1− |%|2)

]
(5)

where % = E{eTe}/E{eHe} is the circularity quotient of e.

Robust widely linear model: We consider a widely linear model of the form

ŷ = hHx+ gHx∗ = wHx, (6)

where x =
[
xT ,xH

]T
and w =

[
hT , gT

]T
are respectively the augmented

input and coefficient vectors, with x,h, g ∈ CN .

Define the estimation error, e = y− ŷ, as the difference between the desired signal
y ∈ C and the filter output ŷ ∈ C. The new cost function is then defined as the
MICCC between the random variables y and ŷ, and is given by

JMICCC = E{κσ,%(e)}. (7)

MICCC-based stochastic gradient algorithm: For an input signal
xk = [xk−N+1, ..., xk]

T ∈ CN at time instant k, the improper correntropy

between the desired signal yk = [yk−N+1, ..., yk]
T ∈ CN and the filter output

ŷk = [ŷk−N+1, ..., ŷk]
T ∈ CN is computed using (5), where ei = yi −wH

k xi.

The value of JMICCC at time intsant k, Jk, is maximised with respect to wk using
gradient ascent [2], that is, based on wk+1 = wk+µ ∂Jk

∂w∗
k
. The computation of

the derivative ∂Jk
∂w∗

k
can be simplified through the CR (or Wirtinger) derivative

chain rule, as
∂Jk
∂w∗

=
∂Jk
∂e

∂e

∂w∗
+
∂Jk
∂e∗

∂e∗

∂w∗
. (8)

With ∂e
∂w∗ = −x and ∂e∗

∂w∗ = 0, equation (8) reduces to

∂Jk
∂w∗

= −∂Jk
∂e

x = −∂κσ,%(e)
∂e

x. (9)

To simplify the derivation of ∂Jk∂e , we assume an unbiased estimator with E{e} =
0, such that ∂%

∂e = 2E{e}
σ2 = 0, to give

∂Jk
∂w∗

= E

{
κσ,%(e)

σ2 (1− |%|2)
(e∗ − %∗e)x

}
. (10)

The instantaneous approximation (N = 1) finally yields the weight update of
the proposed widely linear correntropy adaptive filter, in the form

wk+1 = wk + µ
κσ,%(ek)(e

∗
k − %∗ek)xk

σ2(1− |%|2)
. (11)

Simulations and Applications
Fig. 2 illustrates that the outliers in non-Gaussian environments negatively im-
pact the performance of the MSE-based algorithms, while the correntropy-based
algorithms were unaffected. Owing to its inherent account of noncircularity, %,
the MICCC exhibited a significantly enhanced convergence rate and WSNR over
the proper MCCC and the second-order statistics-based CLMS and ACLMS. The
weight signal-to-noise ratio (WSNR), defined as

WSNRdB = 10 log10

(
wH
optwopt(

wopt −wk

)H (
wopt −wk

)
)

(12)

was used to quantify both convergence and misadjustment.

� ��� ��� ���
������������

�

��

��

�
��
��
��
�
�
���
��

�	

��	


���

����

� ��� ��� ���
������������

�

��

��

	
��

��
���

�
�

�
�
��

Figure 2: WSNR of MICCC, MCCC, CLMS and ACLMS under proper Gaussian
noise (left panel) and impulsive improper noise (right panel).

Synthetic data: 1000 realisations of proper Gaussian noise, x, were generated,
with the real and and imaginary parts of the noise, ηk, characterized by the
respective pdfs 0.9N (0, 1) and N (0, 10). The optimum weights were given by

hopt = [1− 2,−3 + 4]
T and gopt = [2 + 0.5,−2 + 2]

T .

Conclusions
We have extended the definition of complex correntropy to account for
complex-valued data with noncircular distributions. This has served as a basis
for a new stochastic gradient algorithm with the cost function in the form of
the maximum improper correntropy criterion (MICCC). The analysis and
simulations have demonstrated that, with noncircularity accounted for by
MICCC, the proposed method offers faster convergence rates and greater
WSNR in both Gaussian and non-Gaussian environments.

Selected References
1. J.P.F Guimaraes and A.I.R. Fontes, J.B.A. Rego, M.A. Martins, and

J.C. Principe,“Complex Correntropy: Probabilistic Interpretation and Applica-
tion to Complex-Valued Data,” in IEEE Signal Processing Letters, vol. 24, no.
1, pp. 42–45, 2016.

2. D.P. Mandic and V.S.L. Goh, “Complex Valued Nonlinear Adaptive Filters:
Noncircularity, Widely Linear and Neural Models.” New York: Wiley, 2009.

3. N.R. Yousef and A.H. Sayed, “A Unified Approach to the Steady-State and
Tracking Analyses of Adaptive Filters,” IEEE Transactions on Signal Process-
ing, vol. 49, no. 2, pp. 314–324, 2001.


