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Second-order statistics in C

Second-order statistics [1]
For a random variable x ∈ C:

Hermitian variance:

σ2
x = E

{
|x |2
}

= σ2
r + σ2

i ∈ R

Pseudo-variance:

τx = E
{
x2
}

=
(
σ2
r − σ2

i

)
+ 2σri ∈ C

Circularity quotient:

%x =
τx

σ2
x

=
σ2
r − σ2

i + 2σri

σ2
r + σ2

i

∈ C

Both σ2
x and τx are required for full description of second-order statistics [2]
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Circular vs noncircular distributions

Metric for second-order noncircularity [3]

|%x | =

0, circular

1, noncircular

(0, 1) otherwise

{x}

{x
}

| x| = 0

{x}

{x
}

| x| = 0.5

{x}

{x
}

| x| = 1
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Distributions can be ambiguous

Consider the following evolving distributions:

Scatter plot of periodic
deterministic signal

Scatter plot of uniformly
distributed signal

The statistics are equivalent,
even though one is determin-
istic (left panel) and the other
is random (right panel)!

E
{
|x |2
}

= E
{
|y |2
}

= σ2 (variance)

|E
{
x2
}
| = |E

{
y2
}
| = 0 (abs. pseudo-variance)

|E
{
x2
}
|

E {|x |2}
=
|E
{
y2
}
|

E {|y |2}
= 0 (circularity coeff.)

How can we distinguish x from y? # we must abandon conventional statistics.
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A dynamical systems perspective on signals

Consider the (deterministic) dynamical system

xn = f (xn−1)

where f is typically a nonlinear function.

We can express observation, xn, in terms of the initial observation, x0, that is

xn = f (xn−1)

= f 2(xn−2)

...

= f n(x0)

⇒ x0 = f −n(xn)

⇒ we have a time-invariant measure of xn, since at any time instant, n, xn can be expressed in terms
of the initial value, x0.
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Periodic deterministic systems

Consider the periodic system xn = f (xn−1) with the property

xn+N = xn

A recursive expression is given by
xn = eωxn−1

where ω = 2π/N is the angular frequency.

A time-invariant measure
We can now unfold:

xn = eωxn−1

= e2ωxn−2

...

= eωnx0

or, equivalently,

x0 = e−ωnxn
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Invariance of periodic deterministic systems

We can estimate x̂0 = e−ωnxn and ŷ0 = e−ωnyn at every time instant n.

Observe that x̂0 is constant for the deterministic x , however ŷ0 is random!

Scatter plot of periodic deterministic signal
original (black) and unfolded (red)

E
{
|x̂0|2

}
= σ2

|E
{
x̂2

0

}
| = σ2

|E
{
x̂2

0

}
|

E {|x̂0|2}
= 1

Scatter plot of uniformly distributed signal
original (black) and unfolded (red)

E
{
|ŷ0|2

}
= σ2

|E
{
ŷ2

0

}
| = 0

|E
{
ŷ2

0

}
|

E {|ŷ0|2}
= 0
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Periodic systems in Gaussian environments

Let’s test whether deterministic systems with additive circular Gaussian noise also has time-invariant
measures

xn = eωxn−1 + wn

with wn ∼ N
(

0, σ2
w

)

Scatter plot of noisy periodic deterministic signal
original (black) and unfolded (red)

Scatter plot of noisy uniformly distributed signal
original (black) and unfolded (red)

We can still distinguish between the distributions!
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Phase: it is all relative

The sliding DFT [4, 5]

XDFT
n [m] =

N−1∑
k=0

xn+ke
−ωmk

Consider the signal given by xn = sin (ωmn), with ωm = 2πm/N.

The evolution of XDFT
n [m] shows:

The ”rotation” arises due to a change in reference frame for the phase at each time step increment.
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Circularity-Preserving DFT

Circularity Preserving DFT

Xn[m] =

N−1∑
k=0

xn+ke
−ωm(n+k)

The CPDFT modifies the frame of reference of the phase such that it becomes the ”initial phase”.

The evolution of Xn[m] shows:

The phase of the CPDFT is stationary! =⇒ we can confidently exploit statistics in C
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CPDFT: more examples

Sinusoid in additive Gaussian noise

Gaussian noise
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Full spectral description

Full second-order statistical description in the frequency domain

As with complex-valued random variables in general, the full second-order statistical description of
the CPDFT coefficents, X [m], requires both quantities:

Hermitian variance ↔ Power Spectrum: R[m] = E
{
|X [m]|2

}
Pseudo-variance ↔ Panorama: P[m] = E

{
X 2[m]

}

Using both the power spectrum and panorama [6, 7], we can distinguish between deterministic and
random frequency bins using the spectral circularity:

%[m] =
E
{
X 2[m]

}
E {|X [m]|2}

=
P[m]

R[m]
(1)

For a specific frequency bin m:

Deterministic =⇒ noncircular (|%[m]| = 1)

Random =⇒ circular (|%[m]| = 0)
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Example: 3 sinusoids in correlated noise

Consider the harmonic signal in noise, given by

xn = cos (0.15(2πn)) + 0.25 cos (0.25(2πn)) + 0.1 cos (0.4(2πn)) + ηn

where ηn is generated by filtering a zero-mean uncorrelated Gaussian random process with a digital
filter with system function given by

H(z) =
1

1− 1.6 cos(0.2(2π))z−1 + 0.64z−2
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