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Introduction and Motivation
�Goal : state estimation from sequential measurements
�A Motivating Example :

Figure 1: Autonomous Cars

Reproduced from [3]

IStates : positions and velocities of cars
IMeasurements : LIDAR and/or short-range RADAR
�Major challenges :
IHigher dimensional states, informative measurements
IMultimodality in process and measurement noises

Problem Formulation

�Dynamic Model :
p(xk|xk−1) = ∑M

m=1αk,mN (xk|gk(xk−1) + ψk,m, Qk,m)
= ∑M

m=1P (dk = m)p(xk|xk−1, dk = m)
�Measurement Model :

p(zk|xk) = ∑N
n=1βk,nN (zk|hk(xk) + ζk,n, Rk,n)

= ∑N
n=1P (ck = n)p(zk|xk, ck = n)

Particle Filter

�Employs sequential importance sampling and resampling.
Figure 2: Particle filtering
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�Poor representation of posterior distribution for high dimensionality of
state and/or informative measurements.

Particle Flow

�Particle flow [1] involves solution of a differential equation to migrate
particles form the prior distribution to the posterior distribution.

Figure 3: Particle flow
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Particle Flow Particle Filter (PFPF)

�PFPF of [2] constructs its proposal distribution based on a modified
deterministic particle flow applied to the samples from the prior.
�The deterministic mapping ηi1 = T i(ηi0, xik−1, zk) is invertible, so the
proposal can be evaluated as:

q(ηi1|xik−1, zk) = p(ηi0|xik−1)
| det(Ṫ i(ηi0;xik−1, zk))|

,

where, Ṫ i(·) is the Jacobian function of the mapping T i(·).
Proposed Algorithm (PFPF-GMM)

�Our design of joint proposal distribution of (xk, dk, ck):
q(xik, dik, cik|xi0:k−1, d

i
1:k−1, c

i
1:k−1, z1:k) = P (dik)P (cik)q(xik|xik−1, d

i
k, c

i
k, zk)

�Conditioned on the auxiliary variables (dk, ck), invertible particle flow
of [2] is used to construct q(xik|xik−1, d

i
k, c

i
k, zk).

� Importance weights for the joint posterior:

ωik = p(xi0:k, d
i
1:k, c

i
1:k|z1:k)

q(xi0:k, d
i
1:k, c

i
1:k|z1:k)

∝ ωik−1
p(xik|xik−1, d

i
k)p(zk|xik, cik)

q(xik|xik−1, d
i
k, c

i
k, zk)

�Estimation via importance sampling :

p(xk|z1:k) ≈
Np∑
i=1
ωikδ(xk − xik)

Numerical Experiments and Results

�We compare the novel PFPF-GMM algorithm with
IKalman filter type algorithm for unimodal posterior (UKF)
IParticle flow algorithms for unimodal posterior (LEDH, EDH)
IParticle flow particle filters for unimodal posterior (PFPF (LEDH),
PFPF (EDH))
IBootstrap Particle Filter (BPF)
IFiltering algorithms for multimodal posteriors (EKF-GMM,
PF-GMM, GSPF)

�Linear Dynamic and Measurement Models :
IDimension of state, d = 64, xk = αxk−1 + vk, zk = xk + wk.
I vk and wk are drawn from Gaussian mixtures with three components.

Figure 4: Average MSE vs Execution time
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�Nonlinear Dynamic and Measurement Models :
IDimension of state, d = 64.
IDynamic model:

gck(xk−1) = 0.5xck−1 + 8 cos(1.2(k − 1))

+



2.5 xc+1
k−1

1+(xck−1)
2 , if c = 1

2.5 xc+1
k−1

1+(xc−1
k−1)

2 , if 1 < c < d

2.5 xck−1
1+(xc−1

k−1)
2 , if c = d

IMeasurement model : hck(xk) = (xck)
2

20 , 1 ≤ c ≤ d.
I vk and wk are drawn from Gaussian mixtures with three components.

Figure 5: Average MSE vs Execution time
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�Algorithms suitable for unimodal posterior distributions perform
poorly in both experiments.
�BPF and GSPF suffer form weight degeneracy in high dimensions.
� In the linear example, both PFPF-GMM and PF-GMM achieve
comparable MSE to almost optimal EKF-GMM.
� In the nonlinear example, PFPF-GMM outperforms all other
algorithms significantly.

Conclusion

�We presented a novel particle filter for Gaussian mixture noise models.
�Successfully tracks multiple modes of the posterior distribution.
�The proposed filter offers impressive performance in higher dimensions
and in settings with low measurement noise.
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