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Particle Flow Particle Filter for Gaussian Mixture Noise Models

Introduction and Motivation

M Goa

B A Motivating Example :

. state estimation from sequential measurements

Reproduced from [3]

» States : positions and velocities of cars

LIDAR and/or short-range RADAR

>

B Major challenges :

» Higher dimensional states, informative measurements
» Multimodality in process and measurement noises

Problem Formulation

M Dynamic Model :
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Particle Filter
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M Poor representation of posterior distribution for high dimensionality of

state and/or informative measurements.

Particle Flow

M Particle flow [1
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involves solution of a differential equation to migrate

ne prior distribution to the posterior distribution.

Figure 3: Particle flow
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Particle Flow Particle Filter (PFPF)

B Nonlinear Dynamic and Measurement Models :

» Dimension of state, d = 64.
» Dynamic model:

gr(xr—1) = 0.5x7_; + 8cos(1.2(k — 1))

B PFPF of [2] constructs its proposal distribution based on a modified
deterministic particle flow applied to the samples from the prior.

M The deterministic mapping ! = T*(n}, x'._1, z) is invertible, so the

proposal can be evaluated as: (2,51+‘?ijl . ifc—=1
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where, T"(-) is the Jacobian function of the mapping T"(-). () !
Proposed Algorithm (PFPF-GMM) » Measurement model : h{(xy) = (‘Z—%)Q 1<e<d

_ . L » v; and wy, are drawn from Gaussian mixtures with three components.
B Our design of joint proposal distribution of (xy, dy, ct):

Figure 5: Average MSE vs Execution time
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» Kalman filter type algorithm for unimodal posterior (UKF) Exec.Time (s)

» Particle flow algorithms for unimodal posterior (LEDH, EDH)

» Particle flow particle filters for unimodal posterior (PFPF (LEDH),
PFPF (EDH))

» Bootstrap Particle Filter (BPF)

» Filtering algorithms for multimodal posteriors (EKF-GMM,
PF-GMM, GSPF)

M Linear Dynamic and Measurement Models :

M Algorithms suitable for unimodal posterior distributions perform
poorly in both experiments.

™ BPF and GSPF suffer form weight degeneracy in high dimensions.

™ In the linear example, both PFPF-GMM and PF-GMM achieve
comparable MSE to almost optimal EKF-GMM.

™ In the nonlinear example, PFPF-GMM outperforms all other

algorithms significantly.

» Dimension of state, d = 64, xi. = axp_1 + Vi, 2 = T + Wy.

» v, and wy are drawn from Gaussian mixtures with three components. Conclusion

Figure 4: Average MSE vs Execution time

™ We presented a novel particle filter for Gaussian mixture noise models.

102 - Y EKF-GMM _ : : C L :
: A PrGMM 4 M Successfully tracks multiple modes of the posterior distribution.
g ZFSF;FF'GMM ™ The proposed filter offers impressive performance in higher dimensions
101 - B ukF and in settings with low measurement noise.
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