
• Propose regularized FCM (RFCM) method for solving the data 
association uncertainty problem in Multitarget Tracking for the 3D 79 
GHz radar

• Proposed method alleviates data association uncertainty problem by 
taking the interaction between targets into account
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Fig 5(b): FCM for data shown in Fig. 
4(a)

• The proposed RFCM method is able to outperform the conventional 
FCM method in improving data association performance, which leads 
to improved tracking performance using the EKF

• Simulation results using simulated and field data have proven the 
efficacy of the proposed method
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1. Use the DBSCAN clustering algorithm to determine the initial cluster 
for cycle 𝑡𝑡 using 𝑥𝑥𝑗𝑗 ,𝑦𝑦𝑗𝑗 , 𝑣𝑣𝑥𝑥,𝑖𝑖 and 𝑣𝑣𝑦𝑦,𝑖𝑖 for 𝑖𝑖 = 1, … ,𝑛𝑛 as features to obtain 
𝐶𝐶 number of centroids.  𝑁𝑁 denotes the data point index

2. Use the resulting centroids �𝐜𝐜𝑖𝑖(𝑡𝑡) ≜ 𝑥𝑥𝑖𝑖 𝑦𝑦𝑖𝑖 𝑣𝑣𝑥𝑥,𝑖𝑖 𝑣𝑣𝑦𝑦,𝑖𝑖 𝑇𝑇, for 𝑖𝑖 = 1, … ,𝐶𝐶
as state and observation vector to the EKF to obtain the predicted 
centroid for 𝐶𝐶 centroids, denoted as 𝐜𝐜𝑖𝑖
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as initial centroid for the FCM algorithm to find the 

centroid for the next cycle 𝑡𝑡0 + 1, denote as �𝐜𝐜𝑖𝑖(𝑡𝑡 + 1)
4. �𝐜𝐜𝑖𝑖(𝑡𝑡 + 1) → �𝐜𝐜𝑖𝑖(𝑡𝑡), go to Step 2) and  repeat until features from all 

cycles are processed
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Second Regularization Term
• Design �𝐜𝐜𝑖𝑖 such that it is not close to 𝐜𝐜𝑘𝑘

𝑝𝑝

• 𝑓𝑓1 is chosen to be a constant that needs to be manually tuned

Third Regularization Term
• Allows �𝐜𝐜𝑖𝑖 to be attracted to 𝐜𝐜𝑖𝑖

𝑝𝑝, that is, favoring the result from the EKF
• 𝑓𝑓2 𝑑𝑑𝑖𝑖 = 𝛼𝛼 � 𝑑𝑑𝑖𝑖, with 𝛼𝛼 being a parameter that also requires fine tuning

• Two objects initially located at 𝑦𝑦 = 0 moving away from radar
• Paths of objects follow the shape of cosine function
• Closest to each other at cycle number(time) 415
• The MSE of cycle 𝑡𝑡 is computed as MSE 𝑡𝑡 = 1
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𝑀𝑀 ∑𝑖𝑖=1𝐶𝐶 �b𝑖𝑖 𝑡𝑡 −

• A pedestrian and a car move side by side away from radar
• Numerous tracks are in the field data because of reflected signal 

from non-object-of-interest

Fig 5(c): RFCM for data shown in 
Fig. 4(a)

Fig 5(a): Simulated point clouds of two different objects

Fig 6(a): MSE vs. cycle time for FCM 
and RFCM with 𝜶𝜶 = 𝟎𝟎.𝟎𝟎𝟎𝟎𝟎𝟎

Fig 6(b): MSE vs. cycle time for FCM 
and RFCM with 𝒇𝒇𝟏𝟏 = 𝟎𝟎.𝟒𝟒

Fig 7(a): FCM for actual field data

Fig 7(b): RFCM for actual field data

Fig 7(c): DBSCAN initialization with RFCM for actual field data

Fig 4: Influence of c𝑖𝑖 − c𝑖𝑖,𝑘𝑘
𝑝𝑝

2
and  c𝑖𝑖 − c𝑖𝑖,ℓ
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Fig 2: Steps for 
tracking with FCM 

Results - Field Data

Fig 3: Mirror point 𝐜𝐜𝐢𝐢,𝐤𝐤
𝐩𝐩 of 𝐜𝐜𝐤𝐤

𝐩𝐩 with respect to 𝐜𝐜𝐢𝐢
𝐩𝐩 (the mirror)

Fig 1: 3D 79GHz radar and observations
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• 𝑑𝑑𝑖𝑖,𝑗𝑗2 ≜ 𝐱𝐱𝑗𝑗 − 𝐜𝐜𝑖𝑖 2
2

• 𝐜𝐜𝑖𝑖
𝑝𝑝 and 𝐜𝐜𝑘𝑘

𝑝𝑝 are the cluster centroid for the 𝑖𝑖𝑡𝑡𝑡 and 𝑘𝑘𝑡𝑡𝑡 object
• Two regularization terms offer robustness in case the observations of

different targets are noisy or close to each other and overlapped
• Unfortunately, problem is a non-convex
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