

THE ROLE OF PERCEPTUAL TEXTURE DISSIMILARITY IN AUTOMATING SEISMIC DATA INTERPRETATION

Tamir Hegazy, Zhen Wang, and Ghassan AlRegib*

Center for Energy and Geo Processing (CeGP) at Georgia Tech and KFUPM School of Electrical and Computer Engineering Georgia Institute of Technology Atlanta, GA , USA {th164, zwang313, alregib}@gatech.edu

- Background & Motivation
- Proposed Salt-Dome Detection Method
 - Gradient of Texture (GoT)
 - Thresholding & Post-processing
- Dissimilarity Measures
- Experimental Results
- Conclusion

MIGRATED DATA & SEISMIC INTERPRETATION

- Migrated data are acquired from reflected seismic waves
- Seismic interpretation is the extraction of geologic information from seismic data

http://www.oilinuganda.org/features/environment/uganda-pioneers-3d-seismic-surveys.html http://steveholbrook.com/teaching/geol 5180/case studies/case study 3.html

MIGRATED DATA & SEISMIC INTERPRETATION

- Migrated data are acquired from reflected seismic waves
- Seismic interpretation is the extraction of geologic information from seismic data

COMPUTER-AIDED INTERPRETATION

- Manual interpretation is time consuming and label intensive
- Image processing, computer vision, and machine learning techniques have been involved in seismic interpretation
- The interpretation of salt domes remains a challenging problem

CONVENTIONAL METHODS FOR SALT-DOME INTERPRETATION

Methods	Remarks
Edge Detection	Sensitive to local discontinuities
Graph-based Image Segmentation	Computationally less efficient
Active Contour Model	Accuracy depends on the initial contour
Multiple texture attributes	Important to select relevant features

- Background & Motivation
- Proposed Salt-Dome Detection Method
 - Gradient of Texture (GoT)
 - Thresholding & Post-processing
- Dissimilarity Measures
- Experimental Results
- Conclusion

PROPOSED SALT DOME DETECTION METHOD

GRADIENT OF TEXTURE (GOT)

- Human perception is sensitive to texture changes
- GoT describes the texture dissimilarity between two neighboring square windows, denoted as: d(W_{x-}, W_{x+})
- Higher GoT -> point on texture boundary
 Lower GoT -> point inside the texture

 \rightarrow Crossline (x)

GRADIENT OF TEXTURE (GOT)

- Human perception is sensitive to texture changes
- GoT describes the texture dissimilarity between two neighboring square windows, denoted as: d(W_{x-}, W_{x+})
- Higher GoT -> point on texture boundary
 Lower GoT -> point inside the texture

MULTI-SCALE AND -DIRECTIONAL COMPONENTS OF GOT

- Compare the dissimilarity of windows with various sizes
- Detect salt-dome boundary in any direction

used to compute y

component

11

Crossline (x)

used to compute x

component

Depth (v)

THRESHOLDING AND POST-PROCESSING

- Hard Thresholding to highlight likely salt body
- Region growing and morphological operation remove noisy regions and smooth salt-dome boundary.

(a). Normalized GoT Attribute

(b). After thresholding

(c). After region growing

(d). After morphological operation

- Background & Motivation
- Proposed Salt-Dome Detection Method
 - Gradient of Texture (GoT)
 - Thresholding & Post-processing
- Dissimilarity Measures
- Experimental Results
- Conclusion

DISSIMILARITY MEASURES USING FEATURE VECTORS

- \mathbf{F}_{-} and \mathbf{F}_{+} represent the feature vectors of \mathbf{W}_{+} and \mathbf{W}_{-}
- Dissimilarity measure: $d(\mathbf{W}_-,\mathbf{W}_+) = \|\mathbf{F}_- \mathbf{F}_+\|$
- (1). Using intensity and gradient statistics:
 Intensity-based features: mean, standard deviation, and skewness
 Gradient-based features: mean, standard deviation, and entropy

(2). Using singular values of W_+ and W_-

MEASURE BASED ON FOURIER TRANSFORM

(4). Using error spectrum chaos ^[1]: consistent with human perception

$$\begin{split} d(\mathbf{W}_{-},\mathbf{W}_{+}) &= M + \alpha P, \\ M &= E\left\{|\mathscr{F}\left\{|\mathscr{F}\left\{|\mathscr{F}\left\{|\mathbf{W}_{-} - \mathbf{W}_{+}|\right\}\right\}|\right\}|\right\}, \\ P &= E\left\{|\mathscr{F}\left\{|\mathscr{F}\left\{|\mathbf{W}_{-} - \mathbf{W}_{+}|\right\}\right\}|\right\}, \end{split}$$

[1]. T. Hegazy and G. AlRegib, "A New Full-Reference IQA Index Using Error Spectrum Chaos," Proc. 2nd IEEE Global Conference on Signal and Information Processing, Atlanta, USA, Dec. 3-5, 2014.

PROPOSED MEASURE BASED ON ERROR MAGNITUDE SPECTRUM CHAOS

- This measure is inspired by the previous measure
- Dropping the phase: reduces the sensitivity to shape Dropping the gradient: improves computational efficiency
- Dissimilarity measure:

$$d(\mathbf{W}_{-},\mathbf{W}_{+}) = E\left\{\left|\mathscr{F}\left\{\left|\mathscr{F}\left\{\left|\mathscr{F}\left\{\left|\mathbf{W}_{-}-\mathbf{W}_{+}\right|\right\}\right|\right\}\right|\right\}\right\}\right\}$$

- Background & Motivation
- Proposed Salt-Dome Detection Method
 - Gradient of Texture (GoT)
 - Thresholding & Post-processing
- Dissimilarity Measures
- Experimental Results
- Conclusion

EXPERIMENTAL SETUP

- Netherlands offshore F3 block with the inline number ranging from 389 to 409
- Compare five dissimilarity measures in the proposed salt-dome detection framework

 SalSIM index^[2] derived from Frechet distance can be used to measure the similarity between detected boundaries and ground truth

TABLE I: SalSIM indices for various dissimilarity measures

EXPERIMENTAL RESULTS

Seismic	Mag. Spect.	Spectrum	Fourier	SVD	Basic
Sections	Chaos	Chaos	Coeff.	210	Statistics
#389	0.9091	0.9064	0.9050	0.8693	0.8440
#390	0.9198	0.9148	0.9186	0.8995	0.8406
#391	0.8930	0.8876	0.9037	0.8931	0.8585
#392	0.9312	0.9354	0.9345	0.9180	0.9221
#393	0.9331	0.9345	0.9283	0.8824	0.8546
#394	0.9302	0.9260	0.9267	0.9162	0.9283
#395	0.9448	0.9415	0.9337	0.9191	0.9213
#396	0.9419	0.9321	0.9283	0.9164	0.9228
#397	0.9313	0.9273	0.9230	0.9108	0.8586
#398	0.9464	0.9453	0.9369	0.9306	0.9282
#399	0.9435	0.9447	0.9402	0.9278	0.9432
#400	0.9329	0.9326	0.9303	0.9252	0.9230
#401	0.9552	0.9484	0.9507	0.9480	0.9471
#402	0.9532	0.9490	0.9501	0.9487	0.9488
#403	0.9512	0.9500	0.9506	0.9428	0.9377
#404	0.9471	0.9389	0.9405	0.9293	0.9362
#405	0.9456	0.9438	0.9391	0.9156	0.9055
#406	0.9550	0.9481	0.9461	0.9545	0.9487
#407	0.9461	0.9417	0.9434	0.9380	0.9394
#408	0.9332	0.9196	0.9298	0.9255	0.9188
#409	0.9430	0.9408	0.9438	0.9382	0.9287
Mean	0.9375	0.9337	0.9335	0.9214	0.9122
Standard. Dev.	0.0151	0.0155	0.0129	0.0213	0.0358
GoT Time per Section (s)	14.5	438.8	14.8	24.2	1359.2

COMPARISON OF DETECTED SALT-DOME BOUNDARIES

(a). Basic Statistics, SalSIM=0.9362

(b). SVD, SalSIM=0.9293

(c). Fourier Coefficient, SalSIM=0.9405

(d). Spectrum Chaos (Mag. & phase) SalSIM=0.9389

(e). Mag. Spectrum Chaos, SalSIM=0.9471

- Background & Motivation
- Proposed Salt-Dome Detection Method
 - Gradient of Texture (GoT)
 - Thresholding & Post-processing
- Dissimilarity Measures
- Experimental Results
- Conclusion

CONCLUSION

- In the proposed salt-dome detection framework, the perceptual measures are more consistent with human interpretation
- Other perceptual measures in image/video quality assessment can be involved in seismic interpretation
- We have extended the current framework to 3D for more accurate results.

RELATED WORK

Salt-dome detection and tracking

[1]. Z. Wang, T. Hegazy, Z. Long, and G. AlRegib, "Noise-robust Detection and Tracking of Salt Domes in Post-migrated Volumes Using Texture, Tensors, and Subspace Learning," *Geophysics*, 80(6), WD101-WD116.

[2]. M. Shafiq, Z. Wang, A. Amin, T. Hegazy, M. Deriche, and G. AlRegib, "Detection of salt-dome boundary surfaces in migrated seismic volumes using gradient of textures," *Expanded Abstracts of the SEG 85th Annual Meeting*, pp. 1811-1815, New Orleans, Louisiana, Oct. 18-23, 2015.

Fault detection and tracking

[3] Z. Wang and G. AlRegib, "Fault detection in 3D seismic data using the Hough transform and tracking vectors," submitted to IEEE Transactions on Geoscience and Remote Sensing.

[4] Z. Wang and G. AlRegib, "Fault detection in seismic datasets using Hough transform," *Proc. IEEE Intl. Conf. on Acoustics, Speech and Signal Processing (ICASSP)*, pp. 2372-2376, Florence, Italy, May 2014.

Seismic structure retrieval

[5] Z. Long, Z. Wang, and G. AlRegib, "SeiSIM: structural similarity evaluation for seismic data retrieval," *Proc. IEEE Intl. Conf. on Communications, Signal Processing, and their Applications (ICCSPA)*, Sharjah, United Arab Emirates (UAE), Feb. 17-19, 2015.

Scene Labeling

[6] Y. Alaudah and G. AlRegib, "Seismic Section Labeling Using Support Vector Machines and Curvelet Statistics," submitted to *IEEE Intl. Conf. on Acoustics, Speech and Signal Processing (ICASSP)*, Shanghai, China, Mar. 20-25, 2016.