Differentially-private Distributed Principal Component Analysis

Hafiz Imtiaz & Anand D. Sarwate

Department of Electrical and Computer Engineering Rutgers, the State University of New Jersey

April 17, 2018

Outline

1 Motivation

- **2** Problem Formulation
- **3** Differential Privacy
- **4** Proposed Algorithm
- **6** Experimental Results
- 6 Conclusion

Why learn from private data?

- Much of private/sensitive data is being digitized
- Want to learn about population using/reusing data
- Free and open sharing ethical, legal, and technological obstacles

ICASSP 2018 > Motivation

Why learn in distributed setting?

Good feature learning requires large sample sizes.

- Data at a single site may not be sufficient for statistical learning
- Pooling data in one location may not be possible

An example in neuroimaging

- Multiple fMRI collection centers
- Each has a moderate number of samples, at best
- Goal: find a way to reduce the sample dimension

We can perform principal component analysis (PCA)

Principal Component Analysis

Imtiaz & Sarwate

The PCA problem: pooled case

- Data matrix: $\mathbf{X} = [\mathbf{x}_1 \ \mathbf{x}_2 \ \dots \ \mathbf{x}_N] \in \mathbb{R}^{D \times N}$
- Second-moment matrix: $\mathbf{A} = \frac{1}{N} \mathbf{X} \mathbf{X}^{\top}$
- We can decompose \mathbf{A} as: $\mathbf{A} = \mathbf{V} \mathbf{\Lambda} \mathbf{V}^{ op}$
- Here, $\mathbf{\Lambda} = \mathsf{diag}(\lambda_1, \lambda_2, \dots, \lambda_D)$ and $\lambda_1 \geq \lambda_2 \geq \dots \geq \lambda_D \geq 0$

The PCA problem: pooled case

- The best rank-K approximation of \mathbf{A} : $\mathbf{A}_K = \mathbf{V}_K \mathbf{\Lambda}_K \mathbf{V}_K^{\top}$
- The top-K PCA subspace is the span of the corresponding columns of \mathbf{V} : $\mathbf{V}_K(\mathbf{A})$

The PCA problem: distributed case

• One aggregator, S different sites with disjoint datasets

- Local data matrix: $\mathbf{X}_s = [\mathbf{x}_{s,1} \dots \mathbf{x}_{s,N_s}] \in \mathbb{R}^{D imes N_s}$
- Local second-moment matrix: $\mathbf{A}_s = \frac{1}{N_s} \mathbf{X}_s \mathbf{X}_s^{\top}$
- All parties: "nice but curious"

How can we compute a **global** V_K ?

Rutgers

What are our options?

- Send \mathbf{X}_s to aggregator
 - $\rightarrow\,$ huge communication cost
 - $\rightarrow\,$ privacy violation
- Compute \mathbf{V}_K using local data
 - $\rightarrow\,$ poor quality of the subspace

Differential Privacy

[Dwork et al. 2006] An algorithm \mathcal{A} is (ε, δ) -differentially private if for any set of outputs \mathcal{F} , and all $(\mathcal{D}, \mathcal{D}')$ differing in a single point,

$$\mathbb{P}\left(\mathcal{A}(\mathcal{D}) \in \mathcal{F}\right) \le \exp(\varepsilon) \cdot \mathbb{P}\left(\mathcal{A}(\mathcal{D}') \in \mathcal{F}\right) + \delta$$

Differential privacy: hypothesis testing

$$\log \frac{\mathbb{P}\left(\mathcal{A}(\mathcal{D}) \in \mathcal{F}\right)}{\mathbb{P}\left(\mathcal{A}(\mathcal{D}') \in \mathcal{F}\right)} \leq \varepsilon$$

We want to design algorithms that satisfy differential privacy

Changing one sample can significantly change the principal direction

What are we trying to address?

Goal: compute an accurate V_K

- want to exploit all samples across all sites
- want a lower communication cost
- want to preserve a formal privacy definition

Idea: send the differentially private partial square root of \mathbf{A}_s

Proposed Algorithm

Differentially-private Distributed PCA (DPdisPCA)

Input: Data matrix \mathbf{X}_s for $s \in [S]$; privacy parameters ϵ , δ ; intermediate dimension R; reduced dimension K

$$\rightarrow$$
 for $s = 1, 2, \dots, S$ do :

- Compute $\mathbf{A}_s \leftarrow rac{1}{N_s} \mathbf{X}_s \mathbf{X}_s^ op$
- Generate $D \times D$ symmetric matrix \mathbf{E} where $\{\mathbf{E}_{ij} : i \in [D], j \leq i\}$ drawn i.i.d. $\sim \mathcal{N}(0, \Delta_{\epsilon, \delta}^2)$ and $\Delta_{\epsilon, \delta} = \frac{1}{N_s \epsilon} \sqrt{2 \log(\frac{1.25}{\delta})}$

• Compute
$$\hat{\mathbf{A}}_s \leftarrow \mathbf{A}_s + \mathbf{E}$$

- Perform SVD $\hat{\mathbf{A}}_s = \mathbf{U} \boldsymbol{\Sigma} \mathbf{U}^{\top}$
- Compute $\mathbf{P}_s \leftarrow \mathbf{U}_R \mathbf{\Sigma}_R^{rac{1}{2}}$; send \mathbf{P}_s to aggregator
- \rightarrow Compute $\mathbf{A}_c \leftarrow \frac{1}{S}\sum_{s=1}^{S}\mathbf{P}_s\mathbf{P}_s^\top$
- ightarrow Perform SVD $\mathbf{A}_c = \mathbf{V} \mathbf{\Lambda} \mathbf{V}^{ op}$

Output: Differentially-private rank-K subspace V_K

Privacy guarantee of DPdisPCA

Theorem (Privacy of DPdisPCA Algorithm)

DPdisPCA computes an (ϵ, δ) differentially private approximation to the optimal subspace $V_K(A)$.

- \mathcal{L}_2 sensitivity of \mathbf{A}_s is $\frac{1}{N_s}$
- By AG [Dwork et al. 2014] algorithm: computation of $\hat{\bf A}_s$ is (ϵ,δ) differentially private
- Differential-privacy is invariant to post-processing: computation of V_K also satisfies (ϵ, δ) differential privacy

- \mathbf{P}_s is $D\times R:$ communication cost is proportional to $S\times D\times R$
- If we send $\hat{\mathbf{A}}_s$, the cost would be proportional to $S \times D^2.$ Typically, K < R < D
- Sending \mathbf{P}_s instead of $\hat{\mathbf{A}}_s$ does introduce some errors cost of cheaper communication

Rutgers

Experimental Results

- Synthetic dataset (D = 200, K = 50) generated with zero mean and a pre-determined covariance matrix
- MNIST dataset (D = 784, K = 50) (MNIST)
- Covertype dataset (D = 54, K = 10) (COVTYPE)

We are interested to find out:

- how performance varies with "privacy risk" ϵ
- how performance varies with sample size N_s

Table: Notation of performance measures

Algorithm / Setting	Performance Index
Pooled Data	$q_{ m pooled}$
DPdisPCA	qDPdisPCA
Local Data	$q_{ m local}$
Sending $\hat{\mathbf{A}}_s$	q_{full}

• Quality of a subspace $\mathbf{V}:\ \textit{captured energy}$ of \mathbf{A}

$$q(\mathbf{V}) = \operatorname{tr}(\mathbf{V}^{\top} \mathbf{A} \mathbf{V})$$

- We plot the ratio of these quantities with respect to the true captured energy q_{o}

Performance variation

For synthetic data

with ϵ

Performance variation

with N_s

Concluding Remarks

Imtiaz & Sarwate

Concluding remarks

- The distributed algorithm clearly outperforms the local PCA algorithm
- Increasing $\boldsymbol{\epsilon}$ improves performance at the cost of lower privacy
- Datasets with lower D allows smaller ϵ for achieving the same utility
- Increasing $N_{\!s}$ improves performance for a fixed privacy level
- The cost of sending \mathbf{P}_s instead of $\hat{\mathbf{A}}_s$ is noticeable in all datasets

Thank you

