On the Computability of System Approximations under Causality Constraints

Holger Boche and Volker Pohl

Causal LTI Systems

Discrete Linear Time-Invariant (LTI) Systems

- A causal LTI systems is an operator $S: \ell^{2} \rightarrow \ell^{2}$ mapping input sequences $\boldsymbol{x}=\{x[n]\}_{n \in \mathbb{Z}}$ onto output sequences $\boldsymbol{y}=\{y[n]\}_{n \in \mathbb{Z}}$ according to

$$
y[n]=(\mathrm{S} \boldsymbol{x})[n]=\sum_{k=0}^{\infty} f[k] x[n-k], \quad n \in \mathbb{Z} .
$$

- The sequence $\{f[k]\}_{k=0}^{\infty}$ is said to be the impulse response of S .
- The \mathcal{Z}-transform of \boldsymbol{f} is given by

$$
f(z)=(\mathcal{Z} \boldsymbol{f})(z)=\sum_{k=0}^{\infty} f[k] z^{k}, \quad z \in \overline{\mathbb{D}}=\{z \in \mathbb{C}:|z| \leq 1\}
$$

- The transfer function of S is then given by $f\left(\mathrm{e}^{\mathrm{i} \omega}\right), \omega \in[-\pi, \pi)$.

$$
\begin{array}{llll}
\hline \triangleright S \text { is causal } & \Leftrightarrow f(z) \text { is analytic in } z \in \mathbb{D} & \Leftrightarrow & f \in H(\mathbb{D}) \\
\triangleright S \text { is stable } & \Leftrightarrow & \|f\|_{\infty}=\max _{\omega \in[-\pi, \pi)}\left|f\left(\mathrm{e}^{\mathrm{i} \omega}\right)\right|<\infty & \Leftrightarrow \\
& f \in L^{\infty}(\mathbb{T})
\end{array}
$$

We consider spaces $\mathcal{B} \subset H^{\infty}(\mathbb{D})$ of stable causal LTI systems.

Design of LTI Systems - Motivation

- The design of LTI systems is often based on optimization techniques.
- They derive the transfer function f of the system based on certain optimality criteria (optimal filtering, pre-whitening, etc.).
The optimal f has often a very complicated structure without any closed form analytic representation.
The optimal f is often only given by its values on a certain discrete sampling set $\mathcal{Z}=\left\{\mathrm{e}^{\mathrm{i} \omega_{m}}: m=1, \ldots, M\right\}$.
Goal/Approach: Approximate the optimal transfer functions f by simpler stable systems f which are known analytically.

Approximation by Basis Expansion

A natural and common approach is to represent $f \in \mathcal{B}$ in a basis $\left\{\varphi_{n}\right\}_{n=0}^{\infty}$ of \mathcal{B} $f=\sum_{n=0}^{\infty} c_{n}(f) \varphi_{n} \quad$ with coefficient sequence $\left\{c_{n}(f)\right\}_{n=0}^{\infty} \subset \mathbb{C}$ Approximations \widetilde{f}_{N} are obtained by restricting the sum to its first $N \in \mathbb{N}$ terms:

$$
\widetilde{f}_{N}=\mathrm{P}_{N} f=\sum_{n=0}^{N-1} c_{n}(f) \varphi_{n}, \quad N=1,2,3
$$

Since φ is a basis for \mathcal{B}, one has

$$
\lim _{N \rightarrow \infty}\left\|f-\widetilde{f}_{N}\right\|_{\mathcal{B}}=0 \quad \text { for all } f \in \mathcal{B}
$$

Problem

Given finitely many samples $\left\{f\left(\mathrm{e}^{\mathrm{i} \omega_{m}}\right)\right\}_{m=1}^{M}$ of a transfer function $f \in \mathcal{B}$. Find a procedure to determine approximate coefficients, i.e. find a mapping
$\mathrm{A}_{M}:\left\{f\left(\mathrm{e}^{\mathrm{i} \omega_{m}}\right): m=1, \ldots, M\right\} \mapsto\left\{c_{N, n}(f): n=0, \ldots, N(M)-1\right\}$ (1) such that
$\lim _{N \rightarrow \infty}\left\|f-\sum_{n=0}^{N-1} c_{N, n}(f) \varphi_{n}\right\|_{\mathcal{B}}=0 \quad$ for all $f \in \mathcal{B}$

Banach Spaces with Energy Constraint

- Let $\mathcal{A}(\mathbb{D})$ be the disk algebra of all $f \in H^{\infty}(\mathbb{D})$ which are continuous in $\overline{\mathbb{D}}$ - On $\mathcal{A}(\mathbb{D})$, we define for every $\beta \geq 0$ the seminorm

$$
\|f\|_{\beta}=\left(\sum_{n=1}^{\infty} n(1+\log n)^{\beta}|f[n]|^{2}\right)^{1 / 2}
$$

with the Fourier coefficients $f[n]=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f\left(\mathrm{e}^{\mathrm{i} \omega}\right) \mathrm{e}^{-\mathrm{i} n \omega} \mathrm{~d} \omega$

- Therewith, we define a scale of Banach spaces

$$
\mathcal{B}_{\alpha, \beta}=\left\{f \in \mathcal{A}(\mathbb{D}):\|f\|_{\beta}<+\infty\right\}, \quad \beta \geq 0
$$

equipped with the norm $\|f\|_{\mathcal{B}_{\beta}}=\max \left(\|f\|_{\infty},\|f\|_{\beta}\right)$
Properties
$\triangleright \mathcal{B}_{\beta_{2}} \subset \mathcal{B}_{\beta_{1}} \subset \mathcal{B}_{0} \subset \mathcal{A}(\mathbb{D})$ for all $\beta_{2}>\beta_{1}>0$.
$\triangleright\|f\|_{0}$ corresponds to the (Dirichlet) energy of $f \Rightarrow$ Spaces of finite energy \triangleright Parameter β characterize the smoothness (or energy concentration) of f.
Lemma: For every $\beta \geq 0$ the set $\boldsymbol{\psi}=\left\{\psi_{n}(z)=z^{n}\right\}_{n=0}^{\infty}$ is a basis (the Fourier basis) of \mathcal{B}_{β} with coefficient functionals

$$
\begin{equation*}
c_{n}(f)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f\left(\mathrm{e}^{\mathrm{i} \omega}\right) \overline{\psi_{n}\left(\mathrm{e}^{\mathrm{i} \omega}\right)} \mathrm{d} \omega=f[n] . \tag{2}
\end{equation*}
$$

I. Approximation by Numerical Integration

- Apply numerical integration methods to evaluate approximations $c_{N, n}(f)$ of the coefficients (2) based on given samples $\left\{f\left(z_{N, k}\right)\right\}$ of f.
- Use the approximated coefficients $c_{N, n}(f)$ instead of the unknown true values $c_{n}(f)$ and determine the approximations

$$
\begin{equation*}
\widetilde{f}_{N}=\mathrm{Q}_{N} f=\sum_{n=0}^{N-1} c_{N, n}(f) \psi_{n}, \quad N \in \mathbb{N} \tag{3}
\end{equation*}
$$

Question: Can we find an approximation procedure (1) such that

$$
\lim _{N \rightarrow \infty}\left\|f-\mathrm{Q}_{N} f\right\|_{\mathcal{B}_{\beta}}=0 \quad \text { for all } f \in \mathcal{B}_{\beta} .
$$

Example - Integration by Riemann Sums

Approximate the integral in (2) using the rectangular formula of the Riemann sum bases on $M=2 N$ equidistant samples of f on \mathbb{T}, i.e.

$$
\begin{equation*}
c_{n}(f) \approx c_{N, n}(f)=\frac{1}{M} \sum_{m=1}^{M} f\left(z_{N, m}\right) \psi_{n}\left(z_{N, m}\right) \tag{4}
\end{equation*}
$$

based on the sampling set $\mathcal{Z}_{N}=\left\{z_{N, m}=\mathrm{e}^{\mathrm{i} \frac{2 \pi}{M}(m-1)}\right\}_{m=1}^{M} \subset \mathbb{T}$

- Other methods: different quadrature formulas and/or other sampling sets.

Requirements on Integration Method

Two natural assumptions on the integration methods:
(i) To every approximation degree $N \in \mathbb{N}$ and there exists an $M(N) \in \mathbb{N}$ and a sampling set $\mathcal{Z}_{N}=\left\{z_{N, 1}, \ldots, z_{N, M(N)}\right\} \subset \mathbb{T}$ such that the functionals
$c_{N, n}(f)$ are uniquely determined by the values of f on \mathcal{Z}_{N}
(ii) The approximation operators Q_{N} defined by (3) satisfies
$\lim _{N \rightarrow \infty}\left\|\mathrm{Q}_{N} \psi_{n}-\psi_{n}\right\|_{\infty}=0 \quad$ for all $n=0,1,2, \ldots$

No Convergent Method on \mathcal{B}_{β} with $0 \leq \beta \leq 1$
Theorem: Let $0 \leq \beta \leq 1$ be arbitrary and let $\psi=\left\{\psi_{n}\right\}_{n=0}^{\infty}$ be the Fourier basis of \mathcal{B}_{β}. Let $\left\{\mathrm{Q}_{N}\right\}_{N=1}^{\infty}$ be the sequence (3) of operators associated with $\boldsymbol{\psi}$ and which satisfles Conditions (i) and (ii), then

$$
\lim _{N \rightarrow \infty}\left\|\mathrm{Q}_{N}\right\|_{\mathcal{B}_{\beta} \rightarrow \mathcal{B}_{\beta}}=+\infty
$$

Corollary: Let $0 \leq \beta \leq 1$ be arbitrary and let $\left\{\mathrm{Q}_{N}\right\}_{N \in \mathbb{N}}$ be as in the previous theorem. Then there exists a residual subset $\mathcal{R} \subset \mathcal{B}_{\beta}$ such that

$$
\limsup _{N \rightarrow \infty}\left\|\mathrm{Q}_{N} f\right\|_{\infty}=+\infty \quad \text { for all } f \in \mathcal{R}
$$

Convergent Methods on \mathcal{B}_{β} with $\beta>1$

Theorem: Let $\beta>1$ be arbitrary and let $\left\{\mathrm{Q}_{N}\right\}_{N=1}^{\infty}$ be the sequence (3) of approximation operators with coefficients $c_{N, n}(f)$ calculated by (4) then

$$
\lim _{N \rightarrow \infty}\left\|Q_{N} f-f\right\|_{\mathcal{B}_{\beta}}=0 \quad \text { for all } f \in \mathcal{B}_{\beta}
$$

II. Computational Bases

Definition: Let $\mathcal{B} \subset \mathcal{C}(\mathbb{T})$ be a Banach space of continuous functions on \mathbb{T}, and let $\varphi=\left\{\varphi_{n}\right\}_{n=0}^{\infty}$ be a basis for \mathcal{B}. We call φ a computational basis if the corresponding coefficient functionals $\left\{c_{n}(f)\right\}$ of φ have the following property: \triangleright To every $n=0,1,2, \ldots$ there exists an $\mu(n) \in \mathbb{N}$ and distinct numbers $z_{n, 1}, \ldots, z_{n, \mu} \in \mathbb{T}$ such that $c_{n}(f)$ does only depend on the values $f\left(z_{k, n}\right)$, $1 \leq k \leq \mu(n)$ for every $f \in \mathcal{B}$.

- So the nth coefficient $c_{n}(f)$ can be determined exactly from only finitely many values $\left\{f\left(z_{n, 1}\right), \ldots, f\left(z_{n, \mu(n)}\right)\right\}$ of f, for all $f \in \mathcal{B}$
- If a computable basis is known then $\lim _{N \rightarrow \infty}\left\|\mathrm{Q}_{N} f-f\right\|_{\mathcal{B}}=0$ for all $f \in \mathcal{B}$. - Example: Spline basis for $\mathcal{C}(\mathbb{T})$

No Computable Basis on \mathcal{B}_{β} with $0 \leq \beta \leq 1$

Theorem: The spaces \mathcal{B}_{β} with $0 \leq \beta \leq 1$ possess no computational basis.

Discussion and Remarks

- The same results hold for the space of all $f \in \mathcal{A}(\mathbb{D})$ which posses a uniformly converging power series.
- Similar results for Hilbert transform approximations \Rightarrow Causality!
- We gave a precise characterization of subspaces of $\mathcal{A}(\mathbb{D})$ with finite energy on which basis expansions are practically feasible
- We derived a general axiomatic theory showing that all sampling based methods fail on these spaces.
- H. Boche, V. Pohl, "On the computability of system approximations under causality constraints," IEEE ICASSP, Calgary, Canada, April 2018.
H. Boche, V. Poh, "Investigations on the approximability and computability of the Hilbert transform wit applications,", Jan. 2018, sub. for publ.

