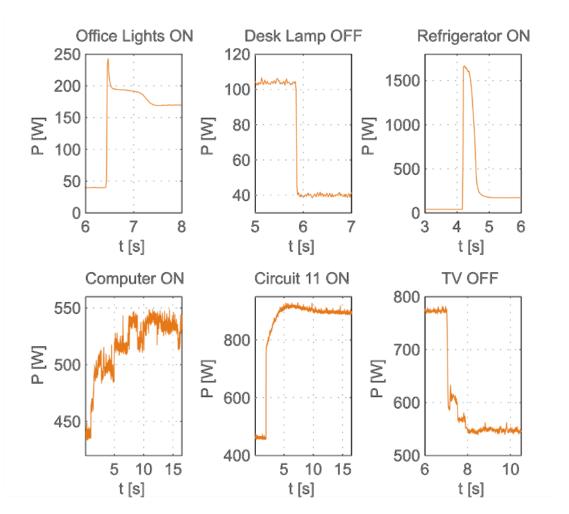

A New Unsupervised Event Detector for Non-Intrusive Load Monitoring

GlobalSIP 2015, 14th Dec. Benjamin Wild, Karim Said Barsim, and Bin Yang Institute of Signal Processing and System Theory University of Stuttgart, Stuttgart, Germany bennawild@web.de,{karim.barsim,bin.yang}@iss.uni-Stuttgart.de

Harmonic analysis

Event detection 1: problem definition

Event detection 2: test statistic


- Event detection 3: post processing
- Experiment

Results

Discussion

Change interval detection in aggregate NILM signals.

- Motivations:
 - Reliable transient feature extraction.
 - Noise-free space for unsupervised and semisupervised event-based NILM.

K. S. Barsim Stuttgart University

[1] K. Anderson, A. Ocneanu, D. Benitez, D. Carlson, A. Rowe, and M. Berges, "BLUED: a fully labeled public dataset for Event-Based Non-Intrusive load monitoring research," in Proceedings of the 2nd KDD Workshop on Data Mining Applications in Sustainability (SustKDD), Beijing, China, Aug. 2012

Task & tools

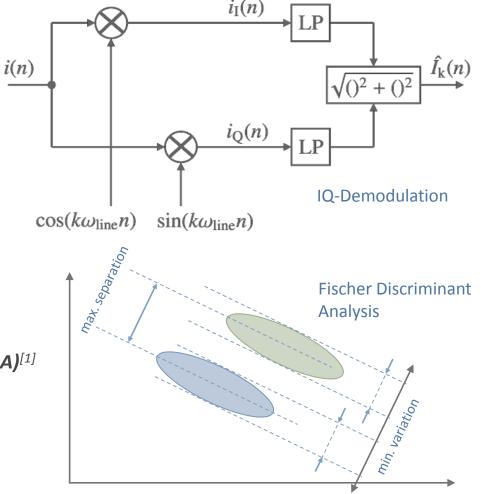
Task and tools

Tas

- Harmonic analysis
- Event detection 1: problem definition
- Event detection 2:
- test statistic Event detection 3:
- post processing
- Experiment
- Results
- Discussion

K. S. Barsim Stuttgart

University


Task:

- Real-time harmonic analysis of aggregate current signals.
- Accurate segmentation of aggregate NILM signals.
- Addressing time varying loads in event-based NILM.
- Change detection in harmonic components.
- High detection sensitivity and more robustness to noise.
- High dimensional aggregate signals (harmonics).
- Tools:
 - Harmonic analysis: IQ-Demodulation
 - Event detection: Kernel Fischer Discriminant Analysis (KFDA)^[1]
- NILM test dataset: BLUED^[2]
 - Suitable for event-based energy disaggregation

[1] S. Mika, A. J. Smola and B. Schoelkopf, "An improved training algorithm for kernel Fisher discriminants", Proc. AISTATS, pp. 98–104, 2001.

[2] K. Anderson, A. Ocneanu, D. Benitez, D. Carlson, A. Rowe, and M. Berges, "BLUED: a fully labeled public dataset for Event-Based Non-Intrusive load monitoring research," in Proceedings of the 2nd KDD Workshop on Data Mining Applications in Sustainability (SustKDD), Beijing, China, Aug. 2012

(3/11) 14th Dec. 2015

Task & tools

Harmonic analysis

Event detection 1: problem definition

Event detection 2:

test statistic Event detection 3: post processing

Experiment

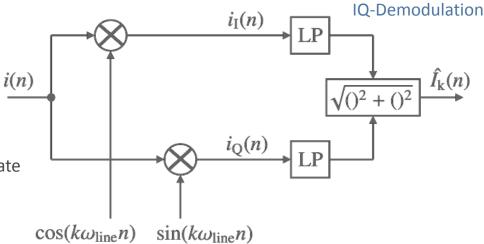
Results

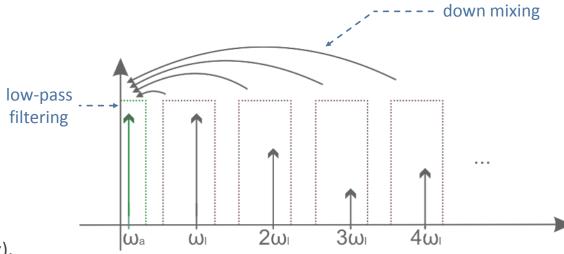
Discussion

K. S. Barsim

Stuttgart University

Harmonic analysis


- Instantaneous current i(n) and voltage v(n) signals $v(n) = \sqrt{2} \sum_{\substack{k=1 \ H}}^{H} V_k(n) \cos(k \omega_1(n) n + \varphi_k^V)$
 - $i(n) = \sqrt{2} \sum_{k=1}^{n} I_k(n) \cos\left(k \,\omega_1(n) \, n + \varphi_k^l\right)$
- Event detection on current harmonics
 - Changes in higher harmonics may not be observed in the aggregate power signals.

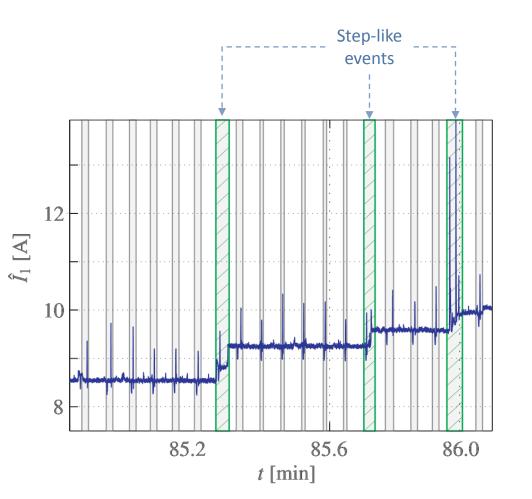

$$P = \frac{1}{T} \int_0^T v(n)i(n)dn = \sum_{k=1}^H V_k I_k \cos(\varphi_k^{IV})$$

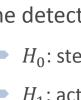
- $V_k \sim 0$ for k > 1
- IQ-Demodulation (down-mixing)
 - In-phase: $i_I(n) = i(n) \cos(k \omega_{\text{line}} n)$
 - Quadrature: $i_Q(n) = i(n) \sin(k \omega_{\text{line}} n)$
- Low-pass filtering:
 - Narrow frequency band around each component.
- Harmonics components:

$$\hat{I}_k(n) = \sqrt{LP(i_l(n))^2 + LP(i_Q(n))^2}$$

Robust to variations in the grid line frequency (50 or 60 Hz).

Event detection 1: problem definition


- Input signals: current harmonics
- Harmonic analysis


Introduction

Task & tools

- Event detection 1 problem definition
- Event detection 2: test statistic
- Event detection 3: post processing
- Experiment
- Results
- Discussion

- $\underline{\theta}(n) = \begin{bmatrix} \hat{I}_1, \hat{I}_3, \dots, \hat{I}_H \end{bmatrix}$
- The first 11 (odd) harmonic components
- Step-like change:
 - a change from one steady state to another.
 - mainly suitable for on-off and FSM loads.
- Active section:
 - a change in the signal from the current steady state.
 - includes intervals caused by time varying loads.
- The detection problem: *a binary test*
 - H_0 : steady state (null)
 - H_1 : active section (alternative)
 - Estimate $H \in \{H_0, H_1\}$

Task & tools

Harmonic analysis

Event detection 1: problem definition

Event detection 2:

Event detection 3: post processing

Experiment

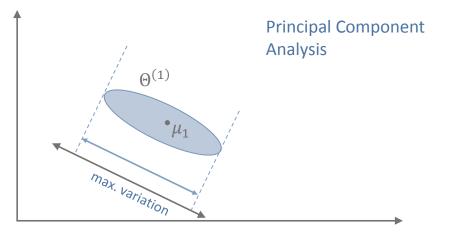
Results

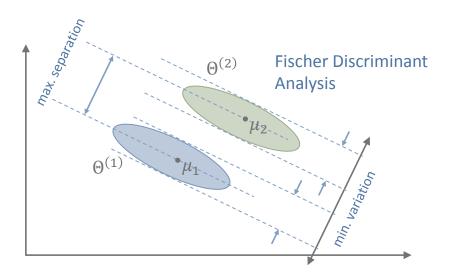
Discussion

Event detection 2: test statistic

- Principal Component Analysis (PCA):
 - Unsupervised dimensionality reduction.
 - Maximize intra-class variations.
 - Projection in the direction of the maximum variance.
- Kernel Fischer Discriminant Analysis (KFDA):
 - Supervised dimensionality reduction.
 - Maximize inter-class separation:

 $\mathbf{S}_{B}^{\boldsymbol{\phi}} = \left(\underline{\mu}_{2}^{\boldsymbol{\phi}} - \underline{\mu}_{1}^{\boldsymbol{\phi}}\right) \left(\underline{\mu}_{2}^{\boldsymbol{\phi}} - \underline{\mu}_{1}^{\boldsymbol{\phi}}\right)^{T}$


Minimize intra-class variation:


$$\mathbf{S}_{W}^{\phi} = \sum_{i=1,2} \sum_{\underline{\theta} \in \Theta^{(i)}} \left(\phi(\underline{\theta}) - \underline{\mu}_{i}^{\phi} \right) \left(\phi(\underline{\theta}) - \underline{\mu}_{i}^{\phi} \right)^{T}$$

Objective function:

$$\underline{\nu}^* = \arg \max_{\nu} \left(J^{\phi}(\underline{\nu}) = \frac{\underline{\nu}^T \mathbf{S}_B^{\phi} \underline{\nu}}{\underline{\nu}^T \mathbf{S}_W^{\phi} \underline{\nu}} \right)$$

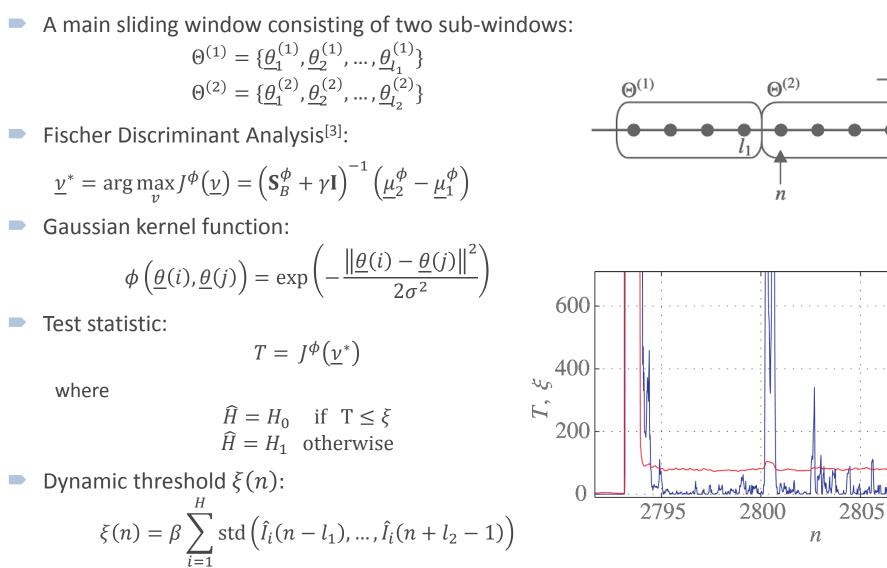
K. S. Barsim Stuttgart University The value of $J^{\phi}(\underline{v}^*)$ is a proximity measure between the two distributions and ϕ is the kernel function.

Event detection 2: test statistic

Harmonic analysis Event detection 1: problem definition Event detection 2:

Introduction

Task & tools

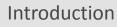

test statistic

Event detection 3: post processing

Experiment

Results

Discussion


K. S. Barsim Stuttgart University

[3] Z. Harchaoui, F. Bach, O. Cappe and E. Moulines, "Kernel-based methods for hypothesis testing", IEEE Signal Processing Magazine, pp. 87–97, 2013

(7/11) 14th Dec. 2015

Mmhaumull

2810

Event detection 3: post processing

Task & tools

Harmonic analysis

Event detection 1: problem definition

Event detection 2: test statistic

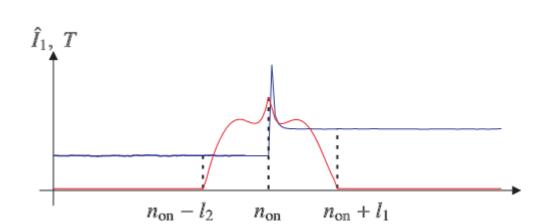
Event detection 3: post processing

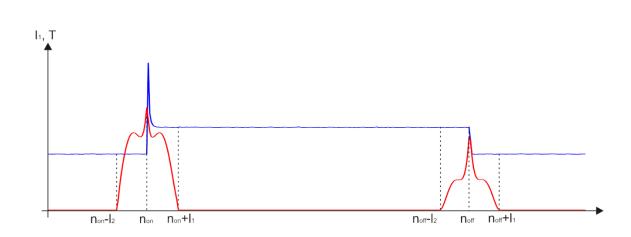
Experiment

Results

Discussion

K. S. Barsim Stuttgart University




Post-detection constraints:

 $E_d = \sum_n T(n) - \xi(n) > \lambda$

 $n_{start,fine} = n_{start,coarse} + l_2$

 $n_{end,fine} = n_{end,coarse} - l_1$

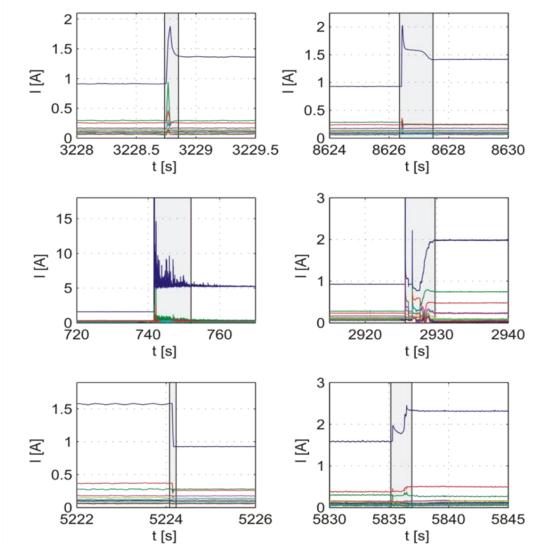
Refinement:

Min. change in mean values.

Task & tools

Harmonic analysis

- Event detection 1: problem definition
- Event detection 2:
- test statistic Event detection 3:
- post processing


Experiment

Results

Discussion

Experiment: BLUED

- Test dataset: BLUED^[1]
 - Residential, building-level, 2-phase (A,B) power dataset
 - Raw data: current i(n) and voltage v(n) at 12kHz sampling.
- Harmonic analysis: IQ-Demodulation
 - First 11 (odd) harmonic components of the current signal.
 - 8th order IIR low pass filter with $f_c = 6$ Hz
- Event detection: Kernel Fischer Discriminant Analysis (KFDA).
 - **D**ynamic threshold $\xi(n)$.
 - Post processing (extract only step-like events).
 - Min. difference in real power (8W)

[1] K. Anderson, A. Ocneanu, D. Benitez, D. Carlson, A. Rowe, and M. Berges, "BLUED: a fully labeled public dataset for Event-Based Non-Intrusive load monitoring research," in Proceedings of the 2nd KDD Workshop on Data Mining Applications in Sustainability (SustKDD), Beijing, China, Aug. 2012

Task & tools

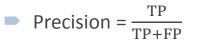
Harmonic analysis

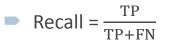
Event detection 1: problem definition

Event detection 2:

test statistic Event detection 3: post processing

```
Experiment
```


```
Results
Discussion
K. S. Barsim
Stuttgart
University
```


Results

Evaluation metrics:

False Positive Percentage (FPP) = $\frac{FP}{E}$

 $F_1-Score = \frac{2 \text{ TP}}{2 \text{ TP}+\text{FP}+\text{FN}}$

<u>2 TP+FP+FN</u>	Phase A	Phase B
# Events	898	1609
# Detections	890	1718
True Positives	887	1483
False Positives	3	235
False Negatives	11	126
False Positive Percentage (FPP)	0.33%	14.61%
Precision	99.66%	86.32%
Recall	98.78%	92.17%
F1-score	99.21%	89.15%

Discussion

Task & tools

Harmonic analysis

Event detection 1: problem definition

Event detection 2: test statistic

Event detection 3: post processing

Experiment

Results

Discussion

Thank you for your attention

(10/11) 14th Dec. 2015