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Event detection 1:
problem definition  Change interval detection in aggregate NILM 

signals.

 Motivations:

 Reliable transient feature extraction.

 Noise-free space for unsupervised and semi-
supervised event-based NILM.

[1] K. Anderson, A. Ocneanu, D. Benitez, D. Carlson, A. Rowe, and M. Berges, “BLUED: a fully labeled public dataset for Event-Based Non-Intrusive load 
monitoring research,” in Proceedings of the 2nd KDD Workshop on Data Mining Applications in Sustainability (SustKDD), Beijing, China, Aug. 2012
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 Task:

 Real-time harmonic analysis of aggregate current signals.

 Accurate segmentation of aggregate NILM signals.

 Addressing time varying loads in event-based NILM.

 Change detection in harmonic components.

 High detection sensitivity and more robustness to noise.

 High dimensional aggregate signals (harmonics).

 Tools:

 Harmonic analysis: IQ-Demodulation

 Event detection: Kernel Fischer Discriminant Analysis (KFDA)[1]

 NILM test dataset: BLUED[2]

 Suitable for event-based energy disaggregation

IQ-Demodulation

[2] K. Anderson, A. Ocneanu, D. Benitez, D. Carlson, A. Rowe, and M. Berges, “BLUED: a fully labeled public dataset for Event-Based Non-Intrusive load 
monitoring research,” in Proceedings of the 2nd KDD Workshop on Data Mining Applications in Sustainability (SustKDD), Beijing, China, Aug. 2012

[1] S. Mika, A. J. Smola and B. Schoelkopf, “An improved training algorithm for kernel Fisher discriminants”, Proc. AISTATS, pp. 98–104, 2001.
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 Instantaneous current 𝑖 𝑛 and voltage 𝑣 𝑛 signals

𝑣 𝑛 = 2 ෍

𝑘=1

𝐻

𝑉𝑘 𝑛 cos 𝑘 𝜔1 𝑛 𝑛 + 𝜑𝑘
𝑉

𝑖 𝑛 = 2 ෍

𝑘=1

𝐻

𝐼𝑘 𝑛 cos 𝑘 𝜔1 𝑛 𝑛 + 𝜑𝑘
𝐼

 Event detection on current harmonics 

 Changes in higher harmonics may not be observed in the aggregate 
power signals.

𝑃 =
1

𝑇
න
0

𝑇

𝑣 𝑛 𝑖 𝑛 𝑑𝑛 = ෍

𝑘=1

𝐻

𝑉𝑘𝐼𝑘 cos 𝜑𝑘
𝐼𝑉

 𝑉𝑘~0 for 𝑘 > 1

 IQ-Demodulation (down-mixing)

 In-phase: 𝑖𝐼 𝑛 = 𝑖 𝑛 cos 𝑘 𝜔line𝑛

 Quadrature: 𝑖𝑄 𝑛 = 𝑖 𝑛 sin 𝑘 𝜔line𝑛

 Low-pass filtering:

 Narrow frequency band around each component.

 Harmonics components:

መ𝐼𝑘 𝑛 = 𝐿𝑃 𝑖𝐼 𝑛
2
+ 𝐿𝑃 𝑖𝑄 𝑛

2

 Robust to variations in the grid line frequency (50 or 60 Hz).

down mixing

low-pass
filtering 

IQ-Demodulation
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 Input signals: current harmonics
𝜃 𝑛 = መ𝐼1, መ𝐼3, … , መ𝐼𝐻

 The first 11 (odd) harmonic components

 Step-like change: 

 a change from one steady state to another.

 mainly suitable for on-off and FSM loads.

 Active section:

 a change in the signal from the current steady state.

 includes intervals caused by time varying loads.

 The detection problem: a binary test

 𝐻0: steady state (null)

 𝐻1: active section (alternative)

 Estimate 𝐻 ∈ {𝐻0, 𝐻1}

Step-like 
events
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 Principal Component Analysis (PCA):

 Unsupervised dimensionality reduction.

 Maximize intra-class variations.

 Projection in the direction of the maximum variance.

 Kernel Fischer Discriminant Analysis (KFDA):

 Supervised dimensionality reduction.

 Maximize inter-class separation: 

𝐒𝐵
𝝓
= 𝜇2

𝜙
− 𝜇1

𝜙
𝜇2
𝜙
− 𝜇1

𝜙 𝑻

 Minimize intra-class variation:

𝐒𝑊
𝜙
= ෍

𝑖=1,2

෍

𝜃∈Θ 𝑖

𝜙 𝜃 − 𝜇𝑖
𝜙

𝜙 𝜃 − 𝜇𝑖
𝜙

𝑇

 Objective function:

𝜈∗ = argmax
𝑣

𝐽𝜙 𝜈 =
𝜈𝑇𝐒𝐵

𝜙
𝜈

𝜈𝑇𝐒𝑊
𝜙
𝜈

 The value of 𝐽𝜙 𝜈∗ is a proximity measure between 

the two distributions and 𝜙 is the kernel function.

Fischer Discriminant
Analysis

Principal Component
Analysis

Θ 1

Θ 1

Θ 2

𝜇1

𝜇1

𝜇2
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 A main sliding window consisting of two sub-windows:

Θ 1 = {𝜃1
1
, 𝜃2

1
, … , 𝜃𝑙1

(1)
}

Θ 2 = {𝜃1
2
, 𝜃2

2
, … , 𝜃𝑙2

(2)
}

 Fischer Discriminant Analysis[3]:

𝜈∗ = argmax
𝑣

𝐽𝜙 𝜈 = 𝐒𝐵
𝜙
+ 𝛾𝐈

−1
𝜇2
𝜙
− 𝜇1

𝜙

 Gaussian kernel function:

𝜙 𝜃 𝑖 , 𝜃 𝑗 = exp −
𝜃 𝑖 − 𝜃 𝑗

2

2𝜎2

 Test statistic:
𝑇 = 𝐽𝜙 𝜈∗

where
෡𝐻 = 𝐻0 if T ≤ 𝜉
෡𝐻 = 𝐻1 otherwise

 Dynamic threshold 𝜉 𝑛 :

𝜉 𝑛 = 𝛽෍

𝑖=1

𝐻

std መ𝐼𝑖 𝑛 − 𝑙1 , … , መ𝐼𝑖 𝑛 + 𝑙2 − 1

Event detection 2: test statistic
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[3] Z. Harchaoui, F. Bach, O. Cappe and E. Moulines, “Kernel-based methods for hypothesis testing”, IEEE Signal Processing Magazine, pp. 87–97, 2013
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 Post-detection constraints:

𝑛𝑒𝑛𝑑,𝑐𝑜𝑎𝑟𝑠𝑒 − 𝑛𝑠𝑡𝑎𝑟𝑡,𝑐𝑜𝑎𝑟𝑠𝑒 ≥ 𝑙1 + 𝑙2

𝐸𝑑 =෍

𝑛

𝑇 𝑛 − 𝜉 𝑛 > 𝜆

 Refinement:
𝑛𝑠𝑡𝑎𝑟𝑡,𝑓𝑖𝑛𝑒 = 𝑛𝑠𝑡𝑎𝑟𝑡,𝑐𝑜𝑎𝑟𝑠𝑒 + 𝑙2

𝑛𝑒𝑛𝑑,𝑓𝑖𝑛𝑒 = 𝑛𝑒𝑛𝑑,𝑐𝑜𝑎𝑟𝑠𝑒 − 𝑙1

 Step-like events:

 Min. change in mean values.
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 Test dataset: BLUED[1]

 Residential, building-level, 2-phase (A,B) power 
dataset

 Raw data: current 𝑖(𝑛) and voltage 𝑣(𝑛) at 12kHz 
sampling.

 Harmonic analysis: IQ-Demodulation

 First 11 (odd) harmonic components of the current 
signal.

 8th order IIR low pass filter with 𝑓𝑐 = 6Hz

 Event detection: Kernel Fischer Discriminant 
Analysis (KFDA).

 Dynamic threshold 𝜉(𝑛).

 Post processing (extract only step-like events).

 Min. difference in real power (8W)

Experiment: BLUED
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[1] K. Anderson, A. Ocneanu, D. Benitez, D. Carlson, A. Rowe, and M. Berges, “BLUED: a fully labeled public dataset for Event-Based Non-Intrusive load 
monitoring research,” in Proceedings of the 2nd KDD Workshop on Data Mining Applications in Sustainability (SustKDD), Beijing, China, Aug. 2012
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 Evaluation metrics:

 False Positive Percentage (FPP) = 
𝐹𝑃

𝐸

 Precision = 
TP

TP+FP

 Recall = 
TP

TP+FN

 F1-Score = 
2 TP

2 TP+FP+FN
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Phase A Phase B

# Events 898 1609

# Detections 890 1718

True Positives 887 1483

False Positives 3 235

False Negatives 11 126

False Positive Percentage (FPP) 0.33% 14.61%

Precision 99.66% 86.32%

Recall 98.78% 92.17%

F1-score 99.21% 89.15%
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Thank you
for your attention


