DESIGN OF OPTIMAL ENTROPY-CONSTRAINED UNRESTRICTED POLAR QUANTIZER FOR BIVARIATE CIRCULARLY SYMMETRIC SOURCES

Department of Electrical and Computer Engineering, McMaster University, Canada wuh58@mcmaster.ca, sorina@mail.ece.mcmaster.ca

CONTRIBUTION: GLOBALLY OPTIMAL ECUPQ DESIGN

- A globally optimal entropy-constrained unrestricted polar quantizer design algorithm is proposed for finite rates.
- Best practical performance for a bivariate memoryless Gaussian source at small rates known to date.
- The problem of rate allocation between the magnitude and phase quantizers is handled efficiently.
- Journal version is available at [1].

PROBLEM FORMULATION

A UPQ quantization bin in the polar coordinates

$$\mathcal{R}(m,s) = \left\{ re^{j\theta} | r_{m-1} \le r < r_m, (s-1)\frac{2\pi}{P_m} \le \theta < s\frac{2\pi}{P_m} \right\}.$$

- M: Number of magnitude levels of the UPQ;
- $\mathbf{r} \triangleq (r_1, r_2, \cdots, r_{M-1})$: The vector of thresholds of the magnitude quantizer;
- P_m : Number of phase regions of the phase quantizer corresponding to cell $[r_{m-1}, r_m)$, and $\mathbf{P} \triangleq (P_1, P_2, \cdots, P_M)$.

The reconstruction for quantizer bin $\mathcal{R}(m,s)$:

$$\theta_{m,s} = (2s-1)\pi/P_m, \quad A_m = sinc\left(\frac{1}{P_m}\right)\frac{\int_{r_{m-1}}^{r_m} rg(r)dr}{\int_{r_{m-1}}^{r_m} g(r)dr}$$

Distortion (per sample pair):

$$D = \int_0^\infty r^2 g(r) dr - \sum_{m=1}^M A_m^2 \int_{r_{m-1}}^{r_m} g(r) dr.$$

Entropy (bits/sample pair):

$$H = \sum_{m=1}^{M} \int_{r_{m-1}}^{r_m} g(r) dr \left(-\log_2 \int_{r_{m-1}}^{r_m} g(r) dr + \log_2 P_m \right).$$

Optimization Problem

 $\min_{M,\mathbf{r},\mathbf{P}} \quad D+\lambda H,$ subject to $r_i \in \mathcal{A}, 1 \leq i \leq M - 1, \ \lambda > 0.$

 $\mathcal{A} = \{a_1, a_2, \cdots, a_K\}$ is a finite set from which the magnitude thresholds of the UPQ are selected.

The set of solutions to the above problem, when λ varies over $(0,\infty)$, is the set of UPQs such that the corresponding pair (H, D) is on the lower boundary of the convex hull of the set of all possible pairs (H, D).

REFERENCES

[1] H. Wu and S. Dumitrescu, "Design of optimal entropy-constrained unrestricted polar quantizer for bivariate circularly symmetric sources", to appear in *IEEE Trans. Commun.*. [2] S. G. Wilson, "Magnitude/phase quantization of independent Gaussian variates", IEEE Trans. Commun., vol. COM-28, no. 11, pp. 1924-1929, Nov. 1980. [3] R. Vafin and W. B. Kleijn, "Entropy-constrained polar quantization and its application to audio coding", IEEE Trans. Speech and Audio

Process., vol. 13, no. 2, pp. 220-232, Mar. 2005.

Huihui Wu and Sorina Dumitrescu

- Graph Model G = (V, E, w)
- For fixed cell $[a_u, a_v)$, the optimal number of phase regions

 $P^*_{[a_u,a_v)} \triangleq \min \arg \min_P \left(-sinc^2 \left(\frac{1}{P} \right) \left(\frac{\int_{a_u}^{a_v} rg(r)dr}{\int_{a_v}^{a_v} g(r)dr} \right)^2 + \lambda \log_2 P \right)$

• Using the above relation, the cost becomes the sum of costs of individual magnitude cells.

Mapping between the magnitude partition and a path in a Weighted Directed Acyclic Graph G = (V, E, w):

- Thresholds set $\mathcal{A} \Leftrightarrow$ Vertex set $V = \{0, 1, 2, \cdots, K+1\}$;
- A magnitude cell $[a_u, a_v) \Leftrightarrow A$ directed edge from u to v in $E = \{ (u, v) \in V^2 \mid 0 \le u < v \le K + 1 \};$
- Encoder partition $\{[0, r_1), \cdots, [r_{M-1}, \infty)\} \Leftrightarrow A$ path from source node 0 to destination node K + 1;
- Cost $d([a_u, a_v)) + \lambda H([a_u, a_v))$ for cell $[a_u, a_v) \Leftrightarrow$ Weight of each edge (u, v):

 $w(u,v) \triangleq$

$$\int_{a_u}^{a_v} g(r)dr \left(-sinc^2 \left(\frac{1}{P_{[a_u,a_v)}^*}\right) \left(\frac{\int_{a_u}^{a_v} rg(r)dr}{\int_{a_u}^{a_v} g(r)dr}\right)^2 + \lambda \log_2 \frac{P_{[a_u,a_v)}^*}{\int_{a_u}^{a_v} g(r)dr}\right).$$

- Cost of the quantizer $D + \lambda H \Leftrightarrow$ Weight of the path;
- The optimization problem is equivalent to finding the Minimum Weight Path in G.

Illustration of the graph G (top) for K = 3 and a path in the graph (bottom). Nodes are depicted with circles and edges with arcs. The path shown on the bottom corresponds to the magnitude quantizer with bins $[0, a_2)$ and $[a_2, \infty)$.

NUMBER OF PHASE REGIONS: COMPUTATION

- The optimal number of phase regions $P^*_{[a_u,a_v)}$ can be found efficiently with the following lemma.
- Lemma For each $(u, v) \in E$, the value $P^*_{[a_u, a_v)}$ equals the smallest $P \in \{1, 3, \dots, P_{max}\}$ [1] satisfying

 $\frac{h(P) - h(P-1)}{g(P) - g(P-1)} \le -\frac{\lambda}{x(a_u, a_v)^2 \ln 2} \le \frac{h(P+1) - h(P)}{g(P+1) - g(P)},$

where $x(a_u, a_v) = \frac{\int_{a_u}^{a_v} rg(r)dr}{\int_{a_v}^{a_v} g(r)dr};$

For each pair $(a_u, a_v), 0 \le u < v \le K + 1, P^*_{[a_u, a_v)}$ can be obtained using binary search.

Experimental Results

- 2D Gaussian vector $(X_1, X_2), X_1 \sim \mathcal{N}(0, 1), X_2 \sim \mathcal{N}(0, 1);$
- Rate Distortion Function: $D_G(R) = 2 \times 2^{-R}$.

Performance comparison with the entropy-coded UPQ [2] and $D_G(R)$

Rate	Distortion (dB)	Improvement over $[2]$ (dB)	Gap to rate distortion function	
1.000	0.883	0.465	0.883	
1.585	-0.550	0.216	1.211	
2.000	-1.681	0.290	1.328	
2.556	-3.295	0.354	1.391	
3.139	-4.987	0.716	1.450	
3.508	-6.079	0.643	1.473	
3.895	-7.224	0.609	1.492	
4.512	-9.058	0.755	1.515	
4.990	-10.486	0.723	1.527	

Performance comparison with ASY, PASY in [3] and $D_G(R)$ ASY: Asymptotical ECUPQ performance derived in [3] PASY: Practical ECUPQ based on the asymptotic point density functions

Rate	Distortion (dB)	Distortion of ASY (dB)	Distortion of PASY (dB)	Improvement	Gap to rate
				over PASY (dB)	distortion function
4.100	-7.832	-7.800	-7.213	0.619	1.501
4.512	-9.058	-9.041	-8.481	0.577	1.515
4.990	-10.486	-10.480	-9.973	0.513	1.527
5.996	-13.500	-13.507	-13.144	0.356	1.539
6.995	-16.506	-16.514	-16.287	0.219	1.541
8.000	-19.532	-19.539	-19.408	0.124	1.540
9.000	-22.547	-22.549	-22.481	0.066	1.538
9.990	-25.528	-25.530	-25.493	0.035	1.536
10.992	-28.544	-28.546	-28.528	0.016	1.536
11.991	-31.550	-31.553	-31.542	0.008	1.536

The proposed algorithm

- always outperforms the design of [2], with gains larger than 0.6 dB when $R \geq 3$.
- outperforms PASY for all rates examined, with improvements higher than 0.513 dB when $R \leq 4.99$.
- performs extremely close to ASY when $R \ge 4.99$, and is slightly better at lower rates.
- achieves the gap to the rate distortion function very close to the gap (1.529 dB) predicted by the high-resolution quantization theory for the case of single encoder-decoder scalar quantizer.

SOLUTION ALGORITHM: $O(K^2 \log P_{max})$ **Proposed Solution Procedure**

- 1. Evaluate cumulative probabilities and first moments during the preprocessing step -O(K) time;
- 2. For each pair $(a_u, a_v), 0 \le u < v \le K+1$, compute the number of phase regions $P^*_{[a_u,a_v)}$ and the edge weight $w(u, v) - O(K^2 \log P_{max})$ operations in all;
- 3. Solve the MWP problem in $G O(K^2)$ time.

Overall Time Complexity: $O(K^2 \log P_{max})$.

ECUPQ at R = 2.0 bits/sample pair