MULTI-SCENARIO DEEP LEARNING FOR MULTI-SPEAKER SOURCE SEPARATION Jeroen Zegers and Hugo Van hamme PSI, ESAT, KULeuven, Belgium

1. Introduction

Multi-speaker Source Separation (MSSS)

- Cocktail party problem
- Speaker independent (unknown sources)
- ► MSSS using Deep Learning

Research Question

- How to combine data from different scenario's?
- Scenario's (tasks): mixtures with different number of speakers

Advantages:

- Data optimally used
- Single model needed

Relevance

- Preprocessing to conversational ASR, meeting transcriptions, ...
- Increased speech intelligibility

4. Joint Learning

Parameter update

$$\Delta \theta_i = g\left(\frac{\partial \mathcal{L}}{\partial \theta_i}\right)$$

- g() is stochastic gradient descent, Adam, ...
- Parameter update for Multi-scenario learning:

$$\mathcal{L}_m = \sum_{j=1}^J \frac{\alpha_j \mathcal{L}_j}{j}$$

Alternative approach:

$\Delta_m \theta_i = \sum_{i}^{J} \Delta_j \theta_i = \sum_{i}^{J} g\left(\frac{\alpha_i \partial \mathcal{L}_j}{\partial \theta_i}\right)$

For Adam $g(\alpha \partial \mathcal{L} / \partial \theta_i) = g(\partial \mathcal{L} / \partial \theta_i)$:

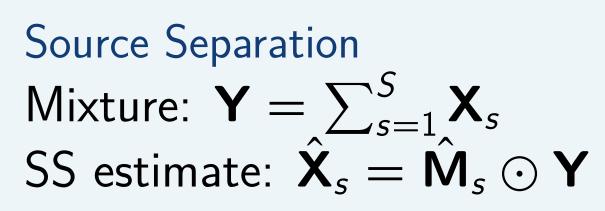
$$\Delta_m \theta_i = \sum_j^J g\left(\frac{\partial \mathcal{L}_j}{\partial \theta_i}\right)$$

2. Permutation Invariant Training (PIT)

- Class SS
- Sources from single class. How to distinguish sources? Permutation independent loss function [1]:

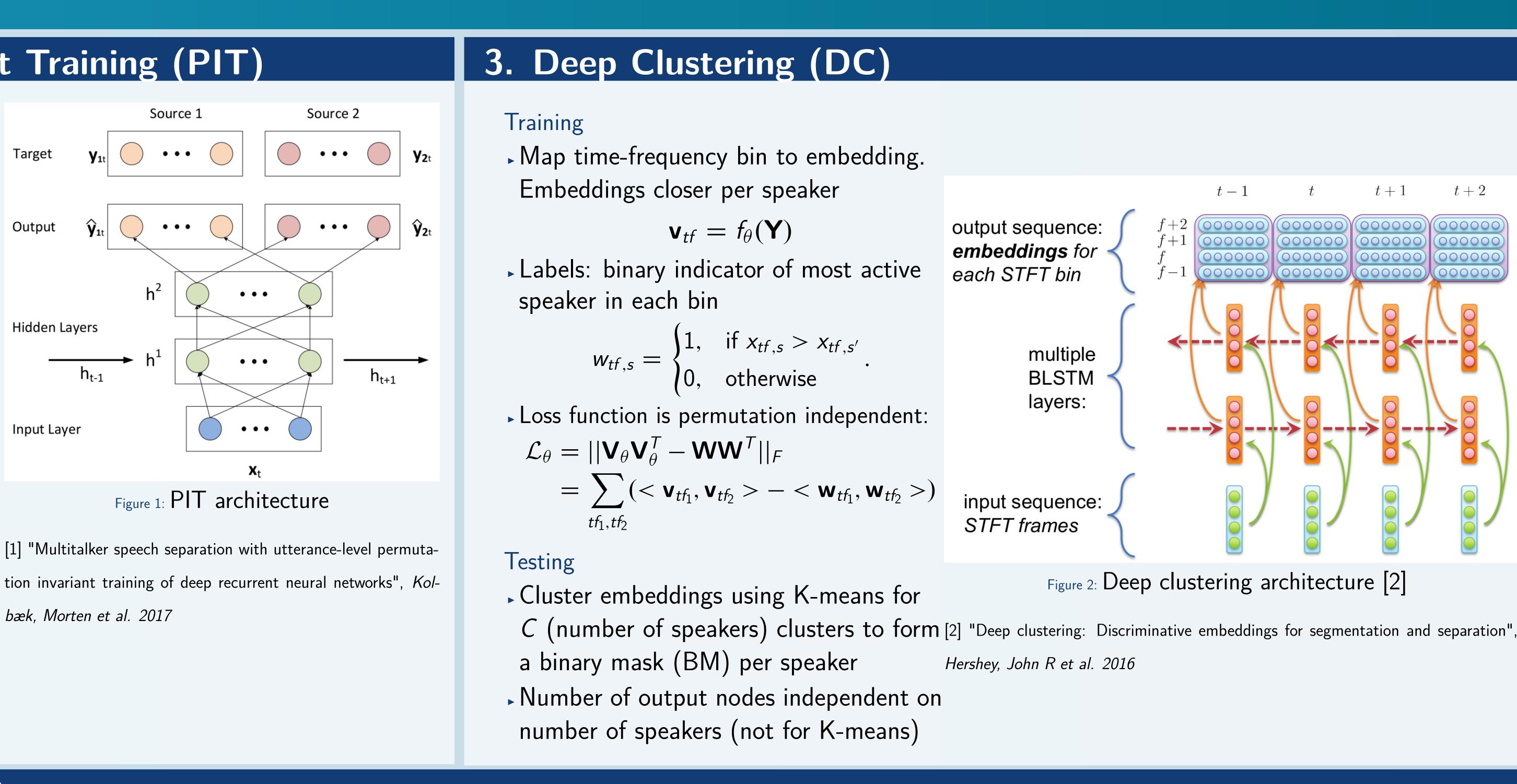
$$\mathcal{L}_{\theta} = \min_{p \in \mathcal{P}_{S}} \sum_{s=1}^{S} \sum_{t,f} \| |\hat{\mathbf{X}}_{\theta,s,tf}| - |\mathbf{X}_{p_{s},tf}| \|_{F}^{2}$$

speakers



Permutation Problem for Single

Number of output nodes dependent on number of



5. Experiments

Database and setup

- Artificial mixtures from Wall Street Journal
- Bidirectional LSTM (2 layers, 600 units)
- MSSS performance in Signal to Distortion mixture
- ▶ TensorFlow
- Single scenario Experiments
- Train on 2 spk and test on 3 spk: -4.14dBFrain on 3 spk and test on 2 spk: -0.51dB
- Multi scenario Experiments
- Fully shared model: slight drop
- Separate output layer: slight increase
- Slightly worse if number of training mixture

Conclussion

- Data from different scenario's ar
- Only need a single model for multiple scenario's

0 (WSJ0) database	Results algo
Ratio (SDR) improvements over original	
	E
5 3	
	DC c
es not increased	F
re useful	Table: SDR im

KULEUVEN

_				
orithm	train set	test set		
		2spk 3spk 2+3spk		
DC	2spk	8.59	1.95	5.27
	3spk	8.08	6.09	7.20
	2+3spk	8.20	5.29	6.66
	2+3spk half	8.08	5.12	6.60
out sep		9.38		7.88
	2+3spk half	8.73	5.77	7.25
PIT	2spk	8.21	-	-
	3spk	_	6.25	_
	2+3spk	8.48	6.50	7.67
	2+3spk half	7.97	6.08	7.03
		1		

provement of reconstructed signals in dB. DC=Deep Clustering. PIT=Permutation Invariant Training.