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Outline

 What is cover song identification?

 Application: detect copyright infringement, music 
retrieval, etc.

 Challenge: Key transposition, structure and speed 
change

 Existing methods: Sequence alignment, Music 
representation

 Our approach

 Represent music with skipping bigram histogram

 Utilize inverted index to accelerate the calculation



Pipeline



Feature extraction

 Chroma Energy Normalized Statistics (CENS)

 Key transposition 

 Given a CENS vector 𝒙 = (𝑥0, 𝑥1…𝑥11)
𝑇, the transposed vector is 

defined as follows:

𝑥(𝑖) = (𝑥𝑖%12, 𝑥 𝑖+1 %12…𝑥 𝑖+11 %12)
𝑇

 Given a CENS sequence 𝑿 = [𝒙𝟏, 𝒙𝟐… 𝒙𝑴], the transposed 

sequence would be:

𝑿(𝒊) = [𝒙𝟏
(𝒊)
, 𝒙𝟐

(𝒊)
…𝒙𝑴

(𝒊)
]

 Vector Embedding

 Embedded vector: ෝ𝒙𝒋 = 𝒙𝒋
𝑻, 𝒙𝒋−𝟏

𝑻 …𝒙𝒋− 𝒎−𝟏
𝑻 , 𝑗 = 𝑚,𝑚+1…M

 Embedded sequence: ෡𝑿 = [ෞ𝒙𝒎, ෟ𝒙𝒎+𝟏… ෞ𝒙𝑴]

 Transposed embedded sequence: ෡𝑿(𝒊)
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Vector quantization and encoding

 Vector quantization is used to cluster embedded 

vectors and a codebook is learnt for encoding.

 Reduce the impact of structural variations.

 Code sequences of cover songs reveal high 

similarity, while code sequences of different songs 

show little similarity.
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Bigram histogram and similarity

 Count the bigram histogram f

 The similarity between two songs is defined as:

𝑆 𝑢, 𝑣 = max
𝑖

෍

𝑎,𝑏

min{𝑓𝑢
𝑖
𝑎, 𝑏 , 𝑓𝑣

0
𝑎, 𝑏 }

 Why use skipping bigram?

Consider the structural variations in cover songs 

A simple example: consider two code sequences {1, 2, 3} and 

{1, 3}, the similarity of bigram histogram is zero

Consider a gap s when constructing bigrams 



Inverted index

 How to compute the similarity efficiently

𝑆 𝑢, 𝑣 = max
𝑖

෍

𝑎,𝑏

min{𝑓𝑢
𝑖
𝑎, 𝑏 , 𝑓𝑣

0
𝑎, 𝑏 }

 A table is established to maintain the mapping from (a, 

b) to recording. 

 Given a pair (a, b), we could get 

{(𝑣, 𝑓𝑣
0
𝑎, 𝑏 )|𝑓𝑣

0
𝑎, 𝑏 > 0} quickly with the help of 

the table.



Retrieval

 Given a query u, code sequences are generated 

through embedding, transposition and encoding.

 Fixed 𝑖, for each bigram a, 𝑏 ∈ 𝑎, 𝑏 𝑓𝑢
𝑖
𝑎, 𝑏 > 0 , 

we find {(𝑣, 𝑓𝑣
0
𝑎, 𝑏 )|𝑓𝑣

0
𝑎, 𝑏 > 0} with the help of 

table.

 Enumerating 𝑖 ∈ {−5,−4…5}, the algorithm computes 

the similarity between the query and the reference.



Experimental setting

 Evaluation metric

Mean average precision (MAP)

Precision at 10 (P@10)

Mean rank of first correctly identified cover (MR1)

 Datasets

Youtube350

Music collection (MC)



Influence of hyperparameters

Resample CENS sequences to 

simulate different speed

Skipping bigrams help 

improve the precision
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Influence of hyperparameters

 Explore how many codes are 

needed to ensure good 

performance

 Sub-linear relationship between 

N and K
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Comparison

 Highest P@10 and MR1 compared to state-of-the-art 

method

 Low time complexity



Conclusion & Future work

Propose a skipping bigram model robust 

against structure and speed variations

Design an inverted index for acceleration

Achieve a high MAP with low time cost on a 

recent cover song dataset

Adapt our approach to large-scale datasets



𝑻𝒉𝒂𝒏𝒌 𝒚𝒐𝒖!


