IMPACT OF MICROPHONE ARRAY CONFIGURATIONS ON ROBUST INDIRECT 3D ACOUSTIC SOURCE LOCALIZATION

Elizabeth Vargas, Keith Brown, Kartic Subr

ICASSP 2018

Acoustic Source Localization

- 1. Record acoustic signals using a microphone array
 - 2. Calculate time difference of arrivals (TDOA)
- 3. Calculate the position using geometric formulae (optimization)

Locating The Source In 3D

Using a microphone array, we calculate Time Difference of Arrivals (TDOA) before we can estimate the acoustic source location

Multilateration

Infer the source position via least squares optimization

- ✓ Fast
- Non-convex function, local minima

QUESTION #1:

Can localization be accurate and fast at the same time?

Microphone Arrays For Acoustic Source Localization

QUESTION #2:

How does the microphone configuration affect localization accuracy?

Simulated Source Locations

Noise added to Time Difference of Arrivals (TDOA)

$$\eta \sim \mathcal{N}\left(0, \frac{\sigma}{100} \frac{\|\mathbf{s} - \mathbf{O}\|}{c}\right)$$

Localization Relative Error

$$\operatorname{error}(\%) = \frac{\|\mathbf{s} - \tilde{\mathbf{s}}\|}{\|\mathbf{s} - \mathbf{O}\|} * 100$$

Wheel and Spiral Configurations Are More Robust

Simulated Source Locations

Noise added to Time Difference of Arrivals (TDOA)

$$\eta \sim \mathcal{N}\left(0, \frac{\sigma}{100} \frac{\|\mathbf{s} - \mathbf{O}\|}{c}\right)$$

Localization Relative Error

$$\operatorname{error}(\%) = \frac{\|\mathbf{s} - \tilde{\mathbf{s}}\|}{\|\mathbf{s} - \mathbf{O}\|} * 100$$

Higher Errors Observed With Ring Configuration

100% noise for a 2m by 2m room with 3 different configurations spanning the same area

Using Real Data

We tested both Multilateration and Steered Response Power (SRP)

Short Range Localization

A: (2.0,-0.32,0.5)

Mid Range Localization

B: (1.5,-0.32,2.0)

Facing The Microphone Array

C: (0.0,-0.32,1.5)

Mid Range Localization

D: (-1.5,-0.32,1.0)

What Happened To The Speed?

Using a microphone array, we calculate Time Difference of Arrivals (TDOA) before we can estimate the acoustic source location

Multilateration

Infer the source position via least squares optimization

- ✓ Fast
- Non-convex function, local minima

How Many Microphone Pairs To Use?

Array 16 Microphones

120 Pairs Array 32 Microphones

496
Pairs

Array 72 Microphones

2556 Pairs

Using 2556 Microphone Pairs

Accuracy (%)

Signal	SRP	Multilateration
Chirp	14.7 (25.9)	12.1 (23.2)
Gunshot	11.0 (13.3)	6.4 (3.5)
Dogbark	16.0 (28.5)	48.5 (44.6)
Speech	13.2 (21.1)	12.9 (22.5)

Time (minutes)

Signal	SRP	Multilateration
Chirp	3 (0.2)	4.5 (0.03)
Gunshot	2.58 (0.2)	2.4 (0.02)
Dogbark	2.49 (0.1)	2.4 (0.02)
Speech	2.63 (0.1)	2.5 (0.02)

Using 100 Microphone Pairs

Accuracy (%)

Signal	SRP	Multilateration
Chirp	14.7 (25.9)	14.2 (25.9)
Gunshot	11.0 (13.3)	9.6 (12.8)
Dogbark	16.0 (28.5)	58.9 (38.8)
Speech	13.2 (21.1)	15.2 (23.5)

Time (minutes)

Signal	SRP	Multilateration
Chirp	3 (0.2)	0.5(0.01)
Gunshot	2.58 (0.2)	0.4 (0.02)
Dogbark	2.49 (0.1)	0.4 (0.02)
Speech	2.63 (0.1)	0.4 (0.02)

Conclusions

QUESTION #1:

Can localization be accurate and fast at the same time?

Yes it can! Direct optimization yields errors similar to the Steered Response Power (SRP) method with <u>6 times less</u> <u>computation</u>

QUESTION #2:

How does the microphone configuration affects the localization accuracy?

Circular arrays are the <u>least desirable</u> configuration