APHASH: ANCHOR-BASED PROBABILITY HASHING FOR IMAGE RETRIEVAL
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We propose an unsupervised hashing method called Anchor-based Probability Hashing (i.e. APHash) to preserve the

similarities by exploiting the distribution of data points:

 Distances are transformed into probabilities in both original and hash spaces.
 Instead of constructing n X n probability matrices within the whole training set as in SePH[1], we first randomly select
a small set of m anchors then construct asymmetric probability matrices of size m X n to avoid high complexity issue.

Method
Step 1

In the original space, we construct probability matrix P
between the small set of m anchors € and the whole
training set X of n data items. Define p;; as the probability

of assigning x; to anchor c;.  Is normalized row by row.

o 1, 1f d(Ci,Xj) < 6
Pili = 0, 1f d(CfL‘,Xj) > 0

d(c;, xj) denotes the Euclidean distance. 0 Is the threshold
Indicating the average distance between c¢; and Its k
nearest neighbors computed as follows

ZjENk (€i) d(ci’xj)

0 = .

Step 2

In hash space, we define @ as the probability distribution
with Hamming distance. Inspired by t-SNE[2], we utilize t-
distribution with one degree freedom to transform Hammi
distance into probabillities.

(1+g(h;,bj;))™
> ieq(L+g(hs,by))—?

4jli =

ng

h; and b; denote hash codes of anchor point and training set
item respectively. Hamming distance can be transformed to

Euclidean distance with g(h;,b;) =1/, ||h; — b]-HZ.

During optimization process, they are relaxed to real-value

vectors h and b to make the problem tractable.

Experimental Results

Step 3

J The overall objective function of APHash containing two
parts: KL-divergence loss and Quantization loss.
J = Jo+ AJq
A 1s a hyper parameter to balance two parts.
Jo: KL-divergence loss measures the difference between
P and Q to make them as conS|stent as possible.

Jo = S‘Tpg]zlogpﬂz

1=1 7=1 le
J,: Quantization loss forces the relaxed entries of matrices

H and B to be closed to +1 during optimization.
—~ —~ 2
J1=1/2y ||A] - 1|, +1/25 ||B| - 1]

d We apply alternating stochastic gradient descent method
to optimize the model.
dj

e We compute the derivative w.r.t. h and b as T and < ab

« The overall objective Is optimized w.r.t one parameter
while fixing another until model converges.
e we use sign() function to obtain final hash code H and B

Step 4

For out-of-sample extension, linear model is applied to learn
hash function with the learned binary codes of anchor set
H. The objective function is

L =min |[H - W' C|l + o W]

The learned binary code B Is fixed and treated as index of
database.

Two labeled datasets are used to evaluate the model: CIFAR-10 and YouTube Faces.

Table 1. Mean Average Precision of Hamming Ranking for different numbers of bits on two datasets. CIFAR-10@8-bit YouTube Face@8-bit
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« We propose an unsupervised Anchor-based Probability
Hashing, APHash.
 Basically, it learns informative hash codes by making
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use of the correlation between anchors and whole
training set items.
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