

OCTAGONAL-AXIS RASTER PATTERN FOR IMPROVED TEST ZONE SEARCH MOTION ESTIMATION

Paulo Gonçalves, Marcelo Porto, Bruno Zatt, Luciano Agostini, Guilherme Correa Federal University of Pelotas (UFPel), Pelotas, Brazil

Contact:

phrgoncalves@inf.ufpel.edu.br

INTRODUCTION

- HEVC bit rates are 40-50% smaller than in H.264 [1], but the encoding process is up to 500% more complex [2]
 - o Much larger number of partitions evaluated in Motion Estimation (ME)
- Test Zone Search (TZS) is a fast ME algorithm
 - o Great coding efficiency, close to Full Search
 - Used in the reference HEVC encoder
 - Still, most of HEVC encoding complexity is due to ME
- This paper proposes OARP: a novel search pattern for

BLOCK MATCHING DISTRIBUTION IN RASTER

- Fig. 2(a)-(c) shows a distribution analysis of best block matching positions after each execution of Raster Search
 - Fig. 2(a) and (b) are corner cases that represent the two most uncommon distributions among all videos analyzed
 - Fig. 2(c) shows the average distribution for all videos
- Fig. 2(d) presents the Octagonal-Axis Raster Search
 - Exploits the observed characteristics in heatmaps
 - o Reduces in 75% the number of search points in the original Raster Search

Raster Search step on TZS

- o Based on an analysis of the best match distributions along the ME search area
- Average TZS time reduction of 60.91% was achieved, with a negligible BD-rate increase (0.037%)

THE TEST ZONE SEARCH ALGORITHM

- TZS has four different steps: Motion Vector Prediction, First Search, Raster Search and Refinement
 - Raster Search step finds only 0.4% of the best block matchings on average [3]
 - Raster Search is the only step that fully exploits the search area
- The average processing time distribution (rightmost column in Fig.1) of TZS algorithm in different PU sizes indicates:
- Video sequences:
 - NebutaFestival;
 - o *Traffic*;
 - BQTerrace;
- o Cactus;
- o ParkScene.

• Covers 62.3% of the total best block matchings

Fig. 2: Heatmap of the block matching distribution within the [-256,+256] search area for (a) BQTerrace, and (b) YachtRide sequences; (c) average block matching distribution for the whole set video sequences tested; (e) proposed Octagonal-Axis Raster Pattern (OARP).

EXPERIMENTS AND RESULTS

- Compression efficiency and Computational complexity was computed in terms of Bjøntegaard Delta rate (BD-rate) and processing time, respectively
- The same conditions in **Box 1** were used to evaluate the proposed pattern, except for the video sequences

 Table I: Experimental results for OARP

Video Sequences	BD-rate (%)	Total TR (%)	TZS TR (%)
PeopleOnStreet	-0.251	18.99	60.65
SteamLocomotiveTrain	+0.051	21.30	61.40
BasketballDrive	-0.029	20.93	59.55
Kimono	-0.072	13.58	53.19
CampfireParty	+0.095	30.04	68.16
ToddlerFountain	-0.030	16.08	56.96
CatRobot	+0.025	22.88	61.71
DaylightRoad	+0.508	28.78	65.66
Average	+0.037	21.57	60.91

- Prediction: 3% Ο
- First Search: 13% Ο
- Raster Search: 75% Ο
- Refinement: 9% Ο
- Quantization Parameters: 22, 27, 32, 37;
- Main profile, Random Access configuration;
- Search Range: 256;
- HEVC encoder: HM software (v16.14).

Box 1: Analysis conditions

Fig. 1: Distribution of TZS processing time across its four steps for different PU sizes.

• Raster Search is by far the most complex step of TZS for

• Table I: OARP leads to an average complexity reduction of 60.91% for TZS and 21.57% for the whole encoding process, with a BD-rate increase of **0.037%**

CONCLUSION

- The proposed search pattern, named Octagonal-Axis Raster Pattern (OARP), was designed to efficiently exploit the search area in the Raster Search step of TZS
- A decrease of 60.91% in TZS complexity was achieved, with a negligible BD-rate increase of **0.037%**
- When implemented in the HEVC reference software, an average total encoding time reduction of 21.6% is achieved

any PU size, since it has the major portion of time in TZS algorithm as seen in the rightmost column in Fig. 1

- Raster Search is an indispensable step in TZS since it is performed when the previous steps cannot predict correctly the region with the best block matching
- By analyzing block matching statistics in Raster Search, intelligent approaches can be proposed to reduce the number of search points

• OARP is compatible with other fast Motion Estimation algorithms that employ Raster Search, and can be jointly implemented with other complexity reduction strategies

REFERENCES

[1] G. J. Sullivan, J. Ohm, H. Woo-Jin, and T. Wiegand, "Overview of the High Efficiency Video Coding (HEVC) Standard," IEEE Transactions on Circuits and Systems for Video Technology, vol. 22, pp. 1649-1668, 2012.

[2] G. Correa, P. Assuncao, L. Agostini, and L. A. da Silva Cruz, "Performance and Computational Complexity Assessment of High Efficiency Video Encoders," IEEE Transactions on Circuits and Systems for Video Technology, vol. 22, pp. 1899-1909, 2012.

[3] P. Goncalves, G. Correa, M. Porto, B. Zatt, L. Agostini, "Multiple Early-Termination Scheme for TZSearch Algorithm based on Data Mining and Decision Trees," IEEE 19th International Workshop on Multimedia Signal Processing, 2017.

