EEG-BASED VIDEO IDENTIFICATION USING **GRAPH SIGNAL MODELING AND GRAPH CONVOLUTIONAL NEURAL NETWORK**

Introduction

EEG signals

- **Expanding graph to overcome low spatial resolution of EEG**
- Application of graph signal modeling and graph convolutional

neural network for EEG signals

Graph Signal Modeling

Graph Convolutional Neural Network¹

Soobeom Jang, Seong-Eun Moon, Jong-Seok Lee

School of Integrated Technology, Yonsei University

{soobeom.jang, se.moon, jong-seok.lee}@yonsei.ac.kr

Experiments & Results

Experiment

DEAP dataset²

- 32 subjects
- 40 music videos
- 32 EEG channels
- 60 sec. EEG
 - + 3 sec. baseline
 - **128Hz sampling**

- 3 sec. window
 - + 2 sec. overlap
- 74,240 samples
 - 80% training
 - 20% test

Video identification task

- Graph expansion with inter-band connection helps extracting useful representations between multiple bands.
- Elaborating intra-band graph structure leads to slight advantage in performance.

• Excessive complexity of the graph is not beneficial.

References

[1] M. Defferrard, X. Bresson, and P. Vandergheynst, "Convolutional neural networks on graphs with fast localized spectral filtering," in Advances in Neural Information Processing Systems, 2016, pp. 3844–3852.
[2] S. Koelstra, C. M¨uhl, M. Soleymani, J.-S. Lee, A. Yazdani, T. Ebrahimi, T. Pun, A. Nijholt, and I. Patras, "DEAP: A database for emotion analysis; using physiological signals," IEEE Transactions on Affective Computing, vol. 3, no. 1, pp. 18–31, 2012.

Acknowledgement

This work was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Korea government (MSIT) (NRF-2016R1E1A1A01943283).