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Problem Formulation

Goal of privacy protection in outsourced services

y

x̂, ŷ
ϕ(y)

ϕ (X)

[ϕ (x (1)) , ..., ϕ (x (M))]
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Introduction
state-of-the-art

Cryptographic Methods - Homomorphic Encryption

• Main Idea: Similarity search in the encrypted domain

• Brute force identification =⇒ huge complexity

Robust Hashing - a single hash from the whole content /
local descriptors / last layer of CNN

• Main Idea: x −→ (011011100110) and believed non-invertability

• Loss in performance due to binarization

• Unauthorized database clustering

Group Testing / Memory Vectors

• Main Idea: Group testing by measuring the proximity to the group

representative

• Group representatives (memory vectors) should be stored in memory
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Introduction
state-of-the-art

Proposed approach: 3 key elements

• Sparsification
• Ambiguization
• Search / Identification

• Advantages:

• Fast search / memory efficient
• Difficult to accurately reconstruct from probe
• Server cannot reveal a structure of the database

• Main concerns addressed in our study:

• Performance
• Memory (database) / complexity (identification)
• Privacy-preserving with respect to:

database A
probe y
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Proposed Framework

Main Idea

Sparsification
Main Idea

1

N

I x(m) ∈ RN

I x(m) ∼ p (x)

Encoder

1

L ≥ N

I a(m) ∈ {−1, 0,+1}L

I ‖a(m)‖0 ≤ Sx

I Rate : R =
1

L
log2

((
L

Sx

)
2Sx

)

Decoder

1

N

I x̂(m) ∈ RN

I Distortion : 1N ‖x(m)− x̂(m)‖22 ≤ D
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Proposed Framework

Main Idea

Ambiguization
Main Idea

1

L

I a(m) ∈ {−1, 0,+1}L

I ‖a(m)‖0 ≤ Sx

Ambiguization

addition of
noisy samples

( )

1

L

I a(m)
⊕

n

I Public Domain

Decoder

1

N

I x̂(m) ∈ RN

I ‖x(m)− x̂(m)‖22 →'2Nσ2x

I Prevent reconstruction from a(m) and from probe q

I Preclude server from discovering the structure of the database A
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Proposed Framework

Main Idea

Privacy-Preserving Search: Private Search
Main Idea: User discloses his probe completely

1

N

I y ∈ RN

1

L

I b ∈ {−1, 0,+1}L

I ‖b‖0 ≤ Sy

Encoder
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Proposed Framework

Main Idea

Privacy-Preserving Search: Public Search
Main Idea: User sends only positions of interest

1

N

I y ∈ RN

1

L

I b ∈ {−1, 0,+1}L

I ‖b‖0 ≤ Sy

I Add Snq random positions

Encoder

Public List

Refined Encoding
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L2 (y)
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Proposed Framework

Main Idea

Main idea behind the proposed solution

Owner

Database

X
X=[x(1) · · ·x(M)]

Encoder

a(m)=ψx(Wx(m))

+τ

−τ
λx−λx

a1 (m)

Clear

a2 (m)

Ambiguized

aclear(m)=sign(a1(m))

aamb(m)=a2(m)
⊕

n
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x́

y = x + z
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Probe Encoder

b = ψy (Wy)

+τ

−τ
λy−λy

b1

Clear

b2

Private

bclear = sign (b1)
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Proposed Framework

Sparse Data Representation

Sparsifying Transform
A Schematic Idea

1

N

1

L

1

L

ψ(Wx(m))

+1

−1

λx−λx

Linear Mapping Element-wise Non-linearity

x (m) ∈ RN Wx (m) ∈ RL a (m) ∈ {−1, 0,+1}L

ϕ(.)

W ψ (.)

Behrooz Razeghi Stochastic Information Processing (SIP) Group, University of Geneva, Switzerland 15 / 31



Privacy-Preserving Outsourced Media Search Using Secure Sparse Ternary Codes 16 / 31

Proposed Framework

Sparse Data Representation

Sparsifying Transform
General Problem Formulation

1

N

x(m) ∈ RN

Encoder

1

L ≥ N

a(m) ∈ {−1, 0,+1}L

Decoder

1

N

x̂(m) ∈ RN

Given

W

Random Learned from data

Encoder:

â (m) = ψ (Wx (m))

Decoder:

x̂ (m) = τ �W†â (m)
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Proposed Framework

Sparse Data Representation

Encoder: as a projection problem (for a fixed W)

â(m)= arg min
a(m)∈AL

‖Wx(m)−a(m)‖22 + βΩ (a(m)),∀m ∈ [M ]

- W ∈ RL×N , x(m) ∈ RN , a(m) ∈ RL

- Closed-form solution for: Ω (.) = ‖.‖0 and Ω (.) = ‖.‖1

ti

ψ(ti)

Hard-thresholding operator

Ω (.) = ‖.‖0

λx−λx ti

ψ(ti)

Soft-thresholding operator

Ω (.) = ‖.‖1

λx−λx
ti = [Wx]i

â (m) = ψ (Wx (m))
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Proposed Framework

Sparse Data Representation

Encoder: Extra constraint on the alphabet

â (m) = ψ (Wx (m))

s.t. a (m) ∈ {−1, 0,+1}

ti

ψ(ti)

λx−λx ti

ψ(ti)

λx−λx

+1

−1

ti = [Wx]i

Sparse Ternary Code
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λx−λx ti

ψ(ti)

λx−λx

+1

−1

ti = [Wx]i

Sparse Ternary Code

Remark:

Binary hashing (like LSH) is the special case of our ψ(.) for λx = 0.

+1

−1

ti

ψ(ti)

λx = 0
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Proposed Framework

Sparse Data Representation

Learning Sparsifying Transform
General Formulation: joint learning(

Ŵ, Â
)

= arg min
(W,A)

‖WX−A‖2F + βWΩW (W) + βAΩA(A)

I Sparse Coding Step (Fixed W):

Â = arg min
A
‖WX−A‖2F + βAΩA (A)

â (m) = ψ (Wx (m))

I Transform Update Step (Fixed A):

Ŵ = arg min
W
‖WX−A‖2F + βWΩW (W)

Linear Regression : Ŵ = AXT
(
XXT + βW IN

)−1

(with quadratic regularizer)
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Proposed Framework

Ambiguization

Ambiguization Scheme
Main Idea

Add noise to non-zero components of sparse representation
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Proposed Framework

Privacy-Preserving Search

Desired property of mapping scheme
Distance preservation in the desired radius

Pri
vacy

Preserving Region

y εN

x

εN

εN

‖x− y‖2

‖ϕ(x)− ϕ(y)‖2

Presereved Distances

Uniform Distances
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Results

Impact of Ambiguization at Server Side

Goal: The server should not distinguish distances ‖ (ψ (Wx)
⊕

n)− ψ (Wy) ‖2

Distances are computed in the full length.
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0
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4

6

8

10

12

14 ψ (Wx)

Behrooz Razeghi Stochastic Information Processing (SIP) Group, University of Geneva, Switzerland 22 / 31



Privacy-Preserving Outsourced Media Search Using Secure Sparse Ternary Codes 22 / 31

Results

Impact of Ambiguization at Server Side

Goal: The server should not distinguish distances ‖ (ψ (Wx)
⊕

n)− ψ (Wy) ‖2

Distances are computed in the full length.

0 2 4 6 8
0

2

4

6

8

10

12

14 ψ (Wx)

ψ (Wx)
⊕

n

Behrooz Razeghi Stochastic Information Processing (SIP) Group, University of Geneva, Switzerland 22 / 31



Privacy-Preserving Outsourced Media Search Using Secure Sparse Ternary Codes 22 / 31

Results

Impact of Ambiguization at Server Side

Goal: The server should not distinguish distances ‖ (ψ (Wx)
⊕

n)− ψ (Wy) ‖2

Distances are computed in the full length.

0 2 4 6 8
0

2

4

6

8

10

12

14 ψ (Wx)

ψ (Wx)
⊕

n

Server Side

Behrooz Razeghi Stochastic Information Processing (SIP) Group, University of Geneva, Switzerland 22 / 31



Privacy-Preserving Outsourced Media Search Using Secure Sparse Ternary Codes 23 / 31

Results

Impact of Ambiguization at Client Side

Goal: The client should distinguish distances
(
‖ (ψ (Wx)

⊕
n)− ψ (Wy) ‖2

)
supp

0 1 2 3 4 5 6 7 8 9
0

2

4

6

8

10

12

14 Owner’s Data: ψ (Wx)

Server’s Data: ψ (Wx)
⊕

n

Client’s Data: ψ (Wy)

Distances are computed in the non-zero components of probe.
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Results

Reconstruction: Authorized User I x̂ = W†a
x : i.i.d. Gaussian, with each sample Xn ∼ N (0, 1), N

L = 1
Sx : Sparsity Level
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Results

Reconstruction: Unauthorized User I x̂ = W† (a
⊕

n)
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L: Length of Total Sparse Code Lp: Length of Public Sparse Code
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Results

Clustering
Generate Structured Data

I Generate:

- Four 512-dimensional i.i.d. vectors with distribution N (0,1)
- 1000 512-dimensional i.i.d. vectors with distribution N (0,0.1)

I Add each 250 (out of 1000) low variance vectors to the four
high variance ones
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Results

Clustering

Goal: Hide structure of database

Original Domain Public Domain

ψ (Wx (m))
⊕

n
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Results

Clustering
Introduce Measure for Evaluation

Define:

I αx = Sx
L

, Sx : Sparsity level

Denote:

I Pintra : PDF of ‘intra-cluster’ distances

I Pinter : PDF of ‘inter-cluster’ distances

Define:

I P1 = αx Pintra + (1− αx)Pinter, 0 ≤ αx ≤ 1

Denote:

I P2 ∼ N
(
µ2, σ2

2

)
, fit to P1

Define:

I Privacy Leak Measure:

D (P1‖P2) = αxD (Pintra‖P2) + (1− αx)D (Pinter‖P2)

= EP1

[
log

P1

P2

]
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PDF

P1

intra inter

P2

D (P1‖P2) ↑

Clear distinguishability based on inter&intra-distances

PDF

P1

P2

D (P1‖P2) → 0

Not distinguishable
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Results

Clustering: How much ambiguization should be added to
have indistinguishability for the server?
Evaluation of Our Scheme: αx = Sx

L
, βx =

Sns
L

, Sns : # of noise components for the
server
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Results

Conclusions:

Preserve distances up to the desired radius

Ensure the reconstruction of data for authorized users

Preclude the curious server to cluster or reconstruct the
samples in the database

Public decoding scheme
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