Privacy-Preserving Outsourced Media Search Using Secure Sparse Ternary Codes

Behrooz Razeghi and Slava Voloshynovskiy

Stochastic Information Processing Group University of Geneva Switzerland

April 2018

・ロト ・ 一下・ ・ ヨト・ ・ ヨト・

Outline

Introduction

Proposed Framework Main Idea Sparse Data Representation Ambiguization Privacy-Preserving Search

Results

3

イロト 不得 トイヨト イヨト

Privacy-preserving content search

- Biometrics
- Physical object recognition and security
- Medical/clinical applications
- Privacy-sensitive multimedia records

Privacy-preserving content search

- Biometrics
- Physical object recognition and security
- Medical/clinical applications
- Privacy-sensitive multimedia records

Recent Trends

Big Data & Distributed Applications Services on outsourced cloud-based systems

Privacy-preserving content search

- Biometrics
- Physical object recognition and security
- Medical/clinical applications
- Privacy-sensitive multimedia records

Recent Trends

Big Data & Distributed Applications Services on outsourced cloud-based systems

Behrooz Razeghi Stochastic Information Processing (SIP) Group, University of Geneva, Switzerland

Introduction Problem Formulation

Goal of privacy protection in outsourced services

(日)

- A - E - N

- state-of-the-art
 - Cryptographic Methods Homomorphic Encryption
 - Main Idea: Similarity search in the encrypted domain
 - Brute force identification \implies huge complexity
 - Robust Hashing a single hash from the whole content / local descriptors / last layer of CNN
 - Main Idea: $\mathbf{x} \longrightarrow (011011100110)$ and believed non-invertability
 - Loss in performance due to binarization
 - Unauthorized database clustering

state-of-the-art

- Cryptographic Methods Homomorphic Encryption
 - Main Idea: Similarity search in the encrypted domain
 - Brute force identification \implies huge complexity
- Robust Hashing a single hash from the whole content / local descriptors / last layer of CNN
 - Main Idea: $\mathbf{x} \longrightarrow (011011100110)$ and believed non-invertability
 - Loss in performance due to binarization
 - Unauthorized database clustering
- Group Testing / Memory Vectors
 - Main Idea: Group testing by measuring the proximity to the group representative
 - Group representatives (memory vectors) should be stored in memory

state-of-the-art

- Cryptographic Methods Homomorphic Encryption
 - Main Idea: Similarity search in the encrypted domain
 - Brute force identification \implies huge complexity
- Robust Hashing a single hash from the whole content / local descriptors / last layer of CNN
 - Main Idea: $\mathbf{x} \longrightarrow (011011100110)$ and believed non-invertability
 - Loss in performance due to binarization
 - Unauthorized database clustering

Group Testing / Memory Vectors

- Main Idea: Group testing by measuring the proximity to the group representative
 - Group representatives (memory vectors) should be stored in memory

化白色 化晶色 化黄色 化黄色 一声。

state-of-the-art

Proposed approach: 3 key elements

- Sparsification
- Ambiguization
- Search / Identification
- Advantages:
 - Fast search / memory efficient
 - Difficult to accurately reconstruct from probe
 - Server cannot reveal a structure of the database

イロト 不得 トイヨト イヨト 二日

state-of-the-art

Proposed approach: 3 key elements

- Sparsification
- Ambiguization
- Search / Identification
- Advantages:
 - Fast search / memory efficient
 - Difficult to accurately reconstruct from probe
 - Server cannot reveal a structure of the database
- Main concerns addressed in our study:
 - Performance
 - Memory (database) / complexity (identification)
 - Privacy-preserving with respect to:
 - database \mathcal{A}
 - probe y

Behrooz Razeghi Stochastic Information Processing (SIP) Group, University of Geneva, Switzerland

state-of-the-art

Proposed approach: 3 key elements

- Sparsification
- Ambiguization
- Search / Identification
- Advantages:
 - Fast search / memory efficient
 - Difficult to accurately reconstruct from probe
 - Server cannot reveal a structure of the database
- Main concerns addressed in our study:
 - Performance
 - Memory (database) / complexity (identification)
 - Privacy-preserving with respect to:
 - $\blacksquare \text{ database } \mathcal{A}$
 - \blacksquare probe y

Main Idea

Part 1: Sparse Data Representation

-

イロト 不得 トイヨト イヨト

Main Idea

Sparsification Main Idea

э

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Main Idea

Sparsification Main Idea

Behrooz Razeghi Stochastic Information Processing (SIP) Group, University of Geneva, Switzerland

э

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Main Idea

Sparsification Main Idea

э

(a)

Main Idea

Part 2: Ambiguization

3

イロト 不得 トイヨト イヨト

Main Idea

(a)

э

Main Idea

- ▶ Prevent reconstruction from $\mathbf{a}(m) \bigoplus \mathbf{n}$ and from probe \mathbf{y}
- $\blacktriangleright \text{ Preclude server from discovering the structure of the database } \mathcal{A}$

Behrooz Razeghi Stochastic Information Processing (SIP) Group, University of Geneva, Switzerland

ъ

Main Idea

Part 3: Privacy-Preserving Search

3

・ロト ・ 一下・ ・ ヨト ・ ヨト

Main Idea

Privacy-Preserving Search: Private Search Main Idea: User discloses his probe completely

< 回 > < 回 > < 回 >

э

Main Idea

Privacy-Preserving Search: Private Search Main Idea: User discloses his probe completely

э

(人間) ト く ヨ ト く ヨ ト

Main Idea

Privacy-Preserving Search: Public Search Main Idea: User sends only positions of interest

(4 同) (4 日) (4 日)

э

Main Idea

Privacy-Preserving Search: Public Search

Main Idea: User sends only positions of interest

└─ Main Idea

Privacy-Preserving Search: Public Search

Main Idea: User sends only positions of interest

Main Idea

Main idea behind the proposed solution

< /□ > < □ >

- ₹ 🖬 🕨

Main Idea

Main idea behind the proposed solution

A (1) > (1)

└─ Main Idea

Main idea behind the proposed solution

-

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Sparse Data Representation

Sparsifying Transform

A Schematic Idea

Sparse Data Representation

Sparsifying Transform

General Problem Formulation

Encoder:

$$\mathbf{\hat{a}}\left(m\right) = \psi\left(\mathbf{Wx}\left(m\right)\right)$$

Decoder:

$$\mathbf{\hat{x}}\left(m\right) = \boldsymbol{\tau} \odot \mathbf{W}^{\dagger} \mathbf{\hat{a}}\left(m\right)$$

Behrooz Razeghi Stochastic Information Processing (SIP) Group, University of Geneva, Switzerland

16/31

3

Sparse Data Representation

Encoder: as a projection problem (for a fixed **W**)

 $\widehat{\mathbf{a}}(m) \! = \! \mathop{\arg\min}\limits_{\mathbf{a}(m) \in \mathcal{A}^L} \left\| \mathbf{W} \mathbf{x}(m) \! - \! \mathbf{a}(m) \right\|_2^2 \! + \beta \Omega\left(\mathbf{a}(m)\right), \forall m \in [M]$

- $\mathbf{W} \in \mathbb{R}^{L imes N}$, $\mathbf{x}(m) \in \mathbb{R}^N$, $\mathbf{a}(m) \in \mathbb{R}^L$
- Closed-form solution for: $\Omega\left(.\right)=\left\|.\right\|_{0}$ and $\Omega\left(.\right)=\left\|.\right\|_{1}$

Behrooz Razeghi Stochastic Information Processing (SIP) Group, University of Geneva, Switzerland

Sparse Data Representation

Encoder: Extra constraint on the alphabet

3

・ロト ・ 一下・ ・ 日 ・ ・ 日 ・

Sparse Data Representation

Encoder: Extra constraint on the alphabet

Behrooz Razeghi Stochastic Information Processing (SIP) Group, University of Geneva, Switzerland

Sparse Data Representation

Learning Sparsifying Transform

General Formulation: joint learning

$$\left(\hat{\mathbf{W}}, \hat{\mathbf{A}}\right) = \arg\min_{\left(\mathbf{W}, \mathbf{A}\right)} \|\mathbf{W}\mathbf{X} - \mathbf{A}\|_{F}^{2} + \beta_{W}\Omega_{W}(\mathbf{W}) + \beta_{A}\Omega_{A}(\mathbf{A})$$

Sparse Coding Step (Fixed W):

$$\hat{\mathbf{A}} = \arg\min_{\mathbf{A}} \|\mathbf{W}\mathbf{X} - \mathbf{A}\|_{F}^{2} + \beta_{A}\Omega_{A} (\mathbf{A})$$
$$\hat{\mathbf{a}}(m) = \psi (\mathbf{W}\mathbf{x}(m))$$

Transform Update Step (Fixed A):

$$\mathbf{\hat{W}} = \arg\min_{\mathbf{W}} \|\mathbf{W}\mathbf{X} - \mathbf{A}\|_{F}^{2} + \beta_{W}\Omega_{W}\left(\mathbf{W}\right)$$

Linear Regression : (with quadratic regularizer)

$$\hat{\mathbf{W}} = \mathbf{A}\mathbf{X}^T \left(\mathbf{X}\mathbf{X}^T + \beta_W \mathbf{I}_N\right)^{-1}$$

Behrooz Razeghi Stochastic Information

Stochastic Information Processing (SIP) Group, University of Geneva, Switzerland

.⊒

- Ambiguization

Ambiguization Scheme

Main Idea

Add noise to non-zero components of sparse representation

Behrooz Razeghi Stochastic Information Processing (SIP) Group, University of Geneva, Switzerland

20/31

3

- Ambiguization

Ambiguization Scheme

Main Idea

Add noise to non-zero components of sparse representation

э

Privacy-Preserving Search

Desired property of mapping scheme

Distance preservation in the desired radius

Behrooz Razeghi Stochastic Information Processing (SIP) Group, University of Geneva, Switzerland

э

Impact of Ambiguization at Server Side

Goal: The server should not distinguish distances $\|(\psi(\mathbf{W}\mathbf{x}) \oplus \mathbf{n}) - \psi(\mathbf{W}\mathbf{y})\|_2$

< 回 > < 回 > < 回 >

э

22/31

Distances are computed in the full length.

Impact of Ambiguization at Server Side

Goal: The server should not distinguish distances $\|(\psi(\mathbf{W}\mathbf{x}) \oplus \mathbf{n}) - \psi(\mathbf{W}\mathbf{y})\|_2$

Distances are computed in the full length.

э

22/31

・ 同 ト ・ ヨ ト ・ ヨ ト

Impact of Ambiguization at Server Side

Goal: The server should not distinguish distances $\|(\psi(\mathbf{W}\mathbf{x}) \oplus \mathbf{n}) - \psi(\mathbf{W}\mathbf{y})\|_2$

<ロト < 同ト < 三ト

Distances are computed in the full length.

Behrooz Razeghi Stochastic Information Processing (SIP) Group, University of Geneva, Switzerland

Impact of Ambiguization at Client Side

Goal: The client should distinguish distances $(\| (\psi(\mathbf{W}\mathbf{x}) \oplus \mathbf{n}) - \psi(\mathbf{W}\mathbf{y}) \|_2)_{supp}$

< ロ > < 同 > < 回 > < 回 >

Distances are computed in the non-zero components of probe.

Behrooz Razeghi Stochastic Information Processing (SIP) Group, University of Geneva, Switzerland

Reconstruction: Authorized User $\triangleright \ \hat{\mathbf{x}} = \mathbf{W}^{\dagger} \mathbf{a}$ $\mathbf{x} : \text{i.i.d.}$ Gaussian, with each sample $X_n \sim \mathcal{N}(0, 1), \frac{N}{L} = 1$ $S_x :$ Sparsity Level

-

Reconstruction: Unauthorized User \blacktriangleright $\hat{\mathbf{x}} = \mathbf{W}^{\dagger} (\mathbf{a} \bigoplus \mathbf{n})$

L: Length of Total Sparse Code

 L_p : Length of Public Sparse Code

Behrooz Razeghi Stochastic Information Processing (SIP) Group, University of Geneva, Switzerland

Clustering Generate Structured Data

- Generate:
 - Four 512-dimensional i.i.d. vectors with distribution $\mathcal{N}\left(\mathbf{0},\mathbf{1}\right)$
 - 1000 512-dimensional i.i.d. vectors with distribution $\mathcal{N}\left(\mathbf{0,0.1}
 ight)$
- Add each 250 (out of 1000) low variance vectors to the four high variance ones

直 マイド・ イマン

Clustering Generate Structured Data

- Generate:
 - Four 512-dimensional i.i.d. vectors with distribution $\mathcal{N}\left(\mathbf{0},\mathbf{1}\right)$
 - 1000 512-dimensional i.i.d. vectors with distribution $\mathcal{N}\left(\mathbf{0,0.1}
 ight)$
- ► Add each 250 (out of 1000) low variance vectors to the four high variance ones

向 ト イヨ ト イヨ ト

Clustering

Goal: Hide structure of database

→

э

Clustering

Introduce Measure for Evaluation

Define:

•
$$\alpha_x = \frac{S_x}{L}$$
, S_x : Sparsity level

Denote:

- P_{intra} : PDF of 'intra-cluster' distances
- Pinter : PDF of 'inter-cluster' distances

Define:

•
$$P_1 = \alpha_x P_{\text{intra}} + (1 - \alpha_x) P_{\text{inter}}, \ 0 \le \alpha_x \le 1$$

Denote:

•
$$P_2 \sim \mathcal{N}\left(\mu_2, \sigma_2^2\right)$$
, fit to P_1

Define:

Privacy Leak Measure:

$$D(P_1||P_2) = \alpha_x D(P_{\text{intra}}||P_2) + (1 - \alpha_x) D(P_{\text{inter}}||P_2)$$
$$= \mathbb{E}_{P_1}\left[\log \frac{P_1}{P_2}\right]$$

Behrooz Razeghi Stochastic Information Processing (SIP) Group, University of Geneva, Switzerland

28/31

Introduce Measure for Evaluation

Define:

•
$$\alpha_x = \frac{S_x}{L}$$
, S_x : Sparsity level

Denote:

Pintra : PDF of 'intra-cluster' distances

 \blacktriangleright $P_{\rm inter}$: PDF of 'inter-cluster' distances Define:

 $\blacktriangleright P_1 = \alpha_x P_{\text{intra}} + (1 - \alpha_x) P_{\text{inter}}, \ 0 \le \alpha_x \le 1$

Denote:

• $P_2 \sim \mathcal{N}\left(\mu_2, \sigma_2^2\right)$, fit to P_1

Define:

Privacy Leak Measure:

$$D(P_1 \| P_2) \uparrow$$

inter

intra

PDF

Clear distinguishability based on inter&intra-distances

Not distinguishable

イロト 不得 トイヨト イヨト 二日

$$D(P_1||P_2) = \alpha_x D(P_{\text{intra}}||P_2) + (1 - \alpha_x) D(P_{\text{inter}}||P_2)$$
$$= \mathbb{E}_{P_1} \left[\log \frac{P_1}{P_2} \right]$$

Behrooz Razeghi Stochastic Information Processing (SIP) Group, University of Geneva, Switzerland

Clustering: How much ambiguization should be added to have indistinguishability for the server?

Evaluation of Our Scheme: $\alpha_x = \frac{S_x}{L}$, $\beta_x = \frac{S_{n_s}}{L}$, $S_{n_s} : \#$ of noise components for the server

Behrooz Razeghi

Stochastic Information Processing (SIP) Group, University of Geneva, Switzerland

-

Conclusions:

- Preserve distances up to the desired radius
- Ensure the reconstruction of data for authorized users
- Preclude the curious server to cluster or reconstruct the samples in the database
- Public decoding scheme

ヘロト ヘヨト ヘヨト ヘヨト

æ