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Wireless Power Transfer in WSNs
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• Wireless sensor networks (WSNs) have applications in, e.g., 
environmental monitoring, disaster recovery ... etc.

• Bottleneck: Limited battery capacity!

• Wireless power transfer (WPT) allows sensors to be 
conveniently charged over-the-air whenever needed. 
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Related Works and Main Contribution

3

• Related Works:

Beamforming designs for WPT:
 Maximize energy harvested by users [Son & Clerckx ‘14]

 Maximize uplink throughput [Liu et al., 2014] [Ju & Zhang, ‘14]

 Maximize minimum rate of users [Yang et al. ‘15]

WPT in the context of WSNs:
 Packet delay and packet loss probability [Wu & Yang ‘15]

 Charging scheduling of mobile chargers [Xie et al. ‘12]

 Charger deployment [He et al., 2013]

 Optimize communication-related performance metrics.

Main Objective: Determine the beam selection and power 
allocation at the chargers with cross-layer consideration on 
the distributed estimation error.
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• The beam selection of charger       is described by

• The total energy gathered by sensor     over time      is
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Sensor Observation and Data Processing
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• The observation at sensor     is                      

where                           is the parameter of interest and                            
is the observation noise.

• Data processing at sensor   :
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Digital Forwarding at the Sensor
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• Uniform Quantization & Natural Bit Mapping:

 Quantization error is                                                     and, thus,                     

• BPSK Modulation: The transmitted signal is

where                is the energy available at sensor    ,      
is the beam selection vector, 

and                                     is the power allocation among chargers.

. . .

Bit Mapping      =

Index =



Parameter Estimation at the Fusion Center (FC)
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• By considering BPSK modulation, the received signal at FC is

where                                   is the channel noise vector.

• The reconstruction of sensor    ‘s observation is

where                                is the detected bit vector.

• By taking the linear MMSE estimator, the estimate at FC is

where                                                                   and

 The corresponding MSE is



Beam Selection and Power Allocation
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• The MSE minimization problem can be formulated as

• The MSE can be upper bounded by

where                                         is vector of quantized observations,          
is the vector of reconstructed values at FC, and                

is the covariance matrix between vectors     and    .

 Total power constraint 

over all chargers.

 Individual constraints 

at each charger
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Approximations of the MSE Upper Bound
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• Assumptions:

1) Independence of noise      and quantization error       

2) High SNR such that                     

• The MSE upper bound can be approximated as

where      is a diagonal matrix with

• Consequently,



Approximation Problem Formulation
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• The MSE minimization problem can be approximated as

where                                  and                              .

• Solved by an alternating optimization algorithm, i.e.,
1)

2)

3)

Relaxed as



Optimization of      Given              .
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• Given               , we optimize      by solving

• Similarly, for solving      with given                  .

equivalent



Exploration of Channel State Information
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• Exploration Phase:

1) Each charger emits power      in turn with all of its beams.

2) If the harvested energy by a certain sensor exceeds a given 
threshold      , it immediately emits a pilot signal to the FC.

3) The FC estimates the charging gain                    by the arrival 
time of the pilot signal and estimates the fading coefficient

by using the received pilot signal. 

4) CSI of sensors not responding by time      are set to 0.

 Higher        less explored sensors; smaller estimation error.   



Simulation Environment
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MSE vs Total Charging Power Constraint
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OBS-OPA : Optimized Beam Selection and Optimized Power Allocation

OBS-EPA : Optimized Beam Selection but Equal Power Allocation

RBS-OPA : Random Beam Selection but Optimized Power Allocation

RBS-EPA : Random Beam Selection and Equal Power Allocation

Imperfect CSI



MSE vs Exploration Threshold
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• Imperfect CSI: 



Conclusion
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• Examined the cross-layer impact of the WPT charging strategy 
on the distributed estimation performance.

• Derived an upper bound for the MSE of the distributed 
estimation system.

• Proposed an effective beam selection and charging power 
allocation scheme based on successive convex approximation.

• Furthermore, in a more recent work, we proposed methods to 
explore the sensors and CSI, and examined the impact of 
imperfect CSI on the distributed estimation performance.


