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Wireless Power Transfer in WSNs
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- Wireless sensor networks (WSNs) have applications in, e.g.,
environmental monitoring, disaster recovery ... etc.

- Bottleneck: Limited battery capacity!

- Wireless power transfer (WPT) allows sensors to be
conveniently charged over-the-air whenever needed.




Related Works and Main Contribution

- Related Works:

Beamforming designs for WPT:

v' Maximize energy harvested by users [Son & Clerckx ‘14]

v Maximize uplink throughput [Liu et al., 2014] [Ju & Zhang, ‘14]
v' Maximize minimum rate of users [Yang et al. ‘15]

WPT in the context of WSNs:
v' Packet delay and packet loss probability [Wu & Yang ‘15]
v Charging scheduling of mobile chargers [Xie et al. ‘12]
v’ Charger deployment [He et al., 2013]

=» Optimize communication-related performance metrics.

[ Main Objective: Determine the beam selection and power A

allocation at the chargers with cross-layer consideration on

N the distributed estimation error. )




WPT for Distributed Estimation
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- The beam selection of charger m is described by

| 1, Fk-th beam of charger m is selected, o
Umk) = 0, otherwise. » Z Am,k) = 1
k=1

- The total energy gathered by sensor i over time 7, is
8’&'(37 P) éZf\le (252 G (m,k) |g(m,k),i|2> P T



Sensor Observation and Data Processing
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- The observation at sensor 1 is
where 6 ~ N (0, 03) is the parameter of interest and
n; ~ N(0, 07 ) is the observation noise.

- Data processing at sensor i:

guantized bit mapping
L > Uy = Qz($z) > b, = [bi,la e bi,Li]




Digital Forwarding at the Sensor

- Uniform Quantization & Natural Bit Mapping:

Index =
Bit Mapping b, = [0. : .00] [0- - -01][0- - -10][0- - -11]

5 % ; AN AQZ AQZ LT W2
=» Quantization error is € =u;—x; ~U (— 55 ) and, thus, O, = 3ai=1)2 -

- BPSK Modulation: The transmitted signal is
Eila. P
Si:[Si,ly---;Si,Li]:\/ (2 )(sz—l)
where &;(a, P) is the energy available at sensor i, a = [a@.1), a1,
L OLE) - A1) - G 1S the beam selection vector,
and P £ [P, P,,..., Py]" is the power allocation among chargers.




Parameter Estimation at the Fusion Center (FC)

- By considering BPSK modulation, the received signal at FC is

| &

where w; ~ N (0,07 1I,,) is the channel noise vector.
* The reconstruction of sensor ‘s observation is

g = 208, b2l +1) — 1 — 2k
where b;=[b; 1, ...,b; 1] is the detected bit vector.
- By taking the linear MMSE estimator, the estimate at FC is

g o
9 — ngnyy

where v £ [y1,95,...,ux]?, Coy = E[fy”], and Cyy = Elyy”].

=» The corresponding MSE is

MSE(a, P) £ E[|0 — 0°] = 03 — CeyC;1CL..



Beam Selection and Power Allocation

- The MSE minimization problem can be formulated as

min MSE(a, P)
a,P
M
subject to Z P < Paarges € Total power constraint
m=1 over all chargers.
0 < P, < Prcharge; ¥V, € Individual constraints
- at each charger
Zk:K—_-l Amk) = 1, Vm, J
amr) € {0,1}, Vm, k,
error due to error due to
- The MSE can be upper bounded by  quantization transmission

channel
MSE(a, P) < 2 min {Z[}¢ — K"uPDHE[K u ~ K"y ]}
keRN

= 2[03_ CGU(Cuu+C(U—Y)(U—Y))—1C9€]
where u=[Q(z,),...,Q(zy)]F is vector of quantized observations,

y = [y1,.-.,yn]" is the vector of reconstructed values at FC, and
C.» = E[ab?] is the covariance matrix between vectors a and b.




s
Approximations of the MISE Upper Bound

» Assumptions:
1) Independence of noise n; and quantization error €;.
2) High SNR such that Pr(b;, # biy) = Q ( 'hi'zf;?’P)) <1

- The MISE upper bound can be approximated as
MSE(a,P) < 205 —tr(Cpu(Cuu+Cru_y)u_y)) Cou)]
> LDl } -
1+0f Zz]\;l{D}z—zl
where D is a diagonal matrix with
{D}is = 072%- - 3(2%2—1) . W;((ziii)_?l) Q (\/Ihzif;%uaP)> :
- Consequently,

mllglMSE(a Pl = miPx‘lMSE(a,P)

MSE(a, P),

~2|0p—

maXZ{D}



Approximation Problem Formulation

- The MSE minimization problem can be approximated as

—1
N = -
h; 2 _, P, T. " Al AP
" Cig + €i2Q 1hal® D s Dk ( ,k)|g( ,k),|
a,P 1 LZ'O'%W

M
subject to Z P, < Pcharge

m=1

0 S Pm S Pm,cha,rgea ‘v’m,

Relaxed as ]

Km
> amp) =1, M[ 0 < Ay < 1
k=1

WAkt )
3(2Li—1)2

2
where c¢;1 =0} + 550 and ¢ =

- Solved by an alternating optimization algorithm, i.e.,
1) Given P =PW find a = alétl),
2) Given a = al%tl), find P = P¢tD),

3) Repeat 1) and 2) until no significant increase in the objective. Take a*
(o0)

m,k’?

ay, = 1if a,,(s’o ,2 > a Vk', and 0, otherwise. Solve for P* given a*.



Optimization of a Given P = P

- Given P = PY we optimize a by solving

1
N @)
h; 2 A(m m Py'T,
maaX E (Ci,l + ;29 <\/ | Zm 1 Zk i J(2 k) V(m k)i i) ))
=1 wy

Km

subject to Za(m’k) =1, 0<aumr <1, Vm,k.
k=1
t = [to, b1, - 7tN]T
,U2
max t |Q(v) SseT, 0> 0

a,t

hi2 =M > Km L 2 m) mob), PO,

_ (6)
subject to t; > ¢;1 + 67’22 2Livi,; ‘v’i,)Pm Tc\l\ > 1/t;. Vi,
N Successive Convex Approximation:
> Vti>t, I:>

(n—1)

1 ti—ti . . .
. Replace 1/t; by e U MO in iteration n.
Za(m,k) = 1, 0 < A (m, k) < 1, ‘v’m, k,
k=1
t, > 0, \V/Z,
t;, > 0, VZ,

- Similarly, for solving P with given a = a“t1),



Exploration of Channel State Information

Exploration Phase Replenishment and Transmission Phase
Sensor Exploration Sensor Sensor Sensor Sensor
Channel Estimation Charging Transmission Charging Transmission
1 1
Beam Selection & Sensor Parameter Sensor Parameter
Charging Power Allocation Sensing Estimation Sensing Estimation

- Exploration Phase:
1) Each charger emits power P.in turn with all of its beams.

2) If the harvested energy by a certain sensor exceeds a given
threshold &;;, it immediately emits a pilot signal to the FC.

3) The FC estimates the charging gain |g(m.x) <> by the arrival
time of the pilot signal and estimates the fading coefficient

h; by using the received pilot signal.
4) CSl of sensors not responding by time 7. are set to 0.
v Higher &, = less explored sensors; smaller estimation error.



Simulation Environment

* N = 20 sensors and M = 5 chargers in 50m-by-50m square area

- Let d,;, d;, and d,,, ; be the distance between sensor ¢ and the event,
FC, and charger m, respectively.

o5 =1, 07 = 0.001 max(dZ,, 1), and ¢}, = —55dBm.
hi|2 ot mln(l/dza ) and lg(m,k),i‘z = G(m,k),iGTC)‘Q/(47TLpdm,i>2

where

G(m @ ‘Zn 0 Wn,k eXp(.] (n Wi 1) sin ¢m,z) 3 (Km = 4, \V/m)

90 o 9 2

Gty == [17_1]T ety [17_j]T w3:[171]T Wy= [laj]T

GG, = 8dBi: receive antenna gain L, = 3dB: polarization loss
¢ = 0.1: rectifier efficiency A = 0.3m: wavelength



IMISE vs Total Charging Power Constraint

[«@=RBS-EPA, Imperfect CSI
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OBS-OPA : Optimized Beam Selection and Optimized Power Allocation
OBS-EPA : Optimized Beam Selection but Equal Power Allocation
RBS-OPA : Random Beam Selection but Optimized Power Allocation
RBS-EPA : Random Beam Selection and Equal Power Allocation



IMISE vs Exploration Threshold

« Imperfect CSl: P, = 4 Watt, T, = 500 ms, B = 2 MHz.

-BE-RBS-EPA, Tmperfect CSI |
-8-RBS-EPA, Perfect CSI  |ii . | ii.

=% =RBS-OPA, Imperfect CSI | i iiii4
== RBS-OPA, Perfect CSI S S
=-@=0BS-EPA, Imperfect CST @ @
=-6- OBS-EPA, Perfect CSI TR
3= OBS-OPA, Imperfect CSI i b
—— OBS-OPA, Perfect CSI AP A

03—

0.25F-

Average MSE (¢)

R T )
Exploration Threshold (&)



Conclusion

- Examined the cross-layer impact of the WPT charging strategy
on the distributed estimation performance.

- Derived an upper bound for the MSE of the distributed
estimation system.

- Proposed an effective beam selection and charging power
allocation scheme based on successive convex approximation.

- Furthermore, in a more recent work, we proposed methods to
explore the sensors and CSI, and examined the impact of
imperfect CS| on the distributed estimation performance.



