Introduction

- Dictionary learning (DL) methods have been successfully extended to multi-subject fMRI data analysis using spatially or temporally concatenated datasets.
- Spatial concatenation allows for the extraction of group-level temporal dynamics and sub-specific spatial maps.
- Temporal concatenation lets us extract sub-specific dynamics and group-level spatial maps.
- Here we propose a hybrid dictionary learning framework which can extract both group and subspecific dynamics and spatial maps simultaneously which are of particular interest in task-based fMRI analysis.

Background

Given a set of signals $\mathbf{Y} = [\mathbf{y}_1, \mathbf{y}_2, ..., \mathbf{y}_N]$, DL methods aims at finding a linear representation for the set of signals \mathbf{Y} by solving

$$\{\mathbf{D}, \mathbf{X}\} = \arg\min_{\mathbf{D}, \mathbf{X}} \parallel \mathbf{Y} - \mathbf{D}\mathbf{X} \parallel_F^2$$

With an overcomplete \mathbf{D} , this problem is ill-posed. Extra constraints are imposed on both \mathbf{D} and \mathbf{X} to solve this problem, which are

- Columns of $\mathbf{X} \in \mathbb{R}^{K \times N}$ should be sparse.
- Columns of $\mathbf{D} \in \mathbb{R}^{n \times K}$ should have unit ℓ_2 norm.

The resulting dictionary \mathbf{D} contains K dense temporal dynamics and the sparse matrix \mathbf{X} has the respective K spatial maps.

Multi-subject extensions of DL methods use spatially concatenated datasets $\mathbf{Y}_{sp} = [\mathbf{Y}_1, \mathbf{Y}_2, \dots, \mathbf{Y}_p]$ leading to group-level dynamics or temporally concatenated datasets $\mathbf{Y}_{te} = [\mathbf{Y}_1^{\top}, \mathbf{Y}_2^{\top}, \dots, \mathbf{Y}_p^{\top}]^{\top}$ which generates group-level spatial maps. Here p denotes the number of subjects.

Dictionary learning algorithm for Multi-Subject fMRI analysis via temporal and spatial concatenation

Asif Iqbal & Abd-Krim Seghouane

Department of Electrical and Electronic Engineering Melbourne School of Engineering, The University of Melbourne, Australia

The Proposed Algorithm

Goal of the algorithm is to represent each voxels' time course from \mathbf{Y}_i as a linear combination of a few atoms from \mathbf{D}_0 (shared) and \mathbf{D}_i (sub-specific) dictionaries such that $\forall i = 1, 2, \cdots, p$

$$\mathbf{Y}_{i} \simeq \tilde{\mathbf{D}}_{i} \, \tilde{\mathbf{X}}_{i} = \begin{bmatrix} \mathbf{D}_{0}, \mathbf{D}_{i} \end{bmatrix} \begin{bmatrix} \mathbf{X}_{0} \\ \mathbf{X}_{i} \end{bmatrix} = \mathbf{D}_{0} \mathbf{X}_{0} + \mathbf{D}_{i} \mathbf{X}_{i} \quad (1)$$

To achieve this goal, we solve the following minimization problem:

$$\min_{\tilde{\mathbf{D}}_{i},\tilde{\mathbf{X}}_{i}} \sum_{i=1}^{p} \left\{ \frac{1}{2} \| \mathbf{Y}_{i} - \mathbf{D}_{0} \mathbf{X}_{0} - \mathbf{D}_{i} \mathbf{X}_{i} \|_{F}^{2} + \frac{\eta}{2} \| \mathbf{D}_{i}^{\top} \mathbf{A}_{i} \|_{F}^{2} \right\} \\
\text{s.t.} \| \mathbf{x}_{i}^{m} \|_{0} \leq s_{i}, \| \mathbf{x}_{0}^{m} \|_{0} \leq s_{0}, \| \mathbf{d}_{k} \|_{2} = 1 \\
\forall \quad i = 1, 2, \dots, p \text{ and } m = 1, 2, \dots, N$$
(2)

Here $\mathbf{A}_i = [\mathbf{D}_0, \mathbf{D}_1, \dots, \mathbf{D}_{i-1}, \mathbf{D}_{i+1}, \dots, \mathbf{D}_p]$ is the concatenation of all except currently updating dictionary. We propose to solve 2 in an alternating optimization fashion, i.e. solving for one variable with others fixed.

1. Sparse Coding: With dictionaries $(\mathbf{D}_0, \mathbf{D}_i)$ and sub-specific sparse codes \mathbf{X}_i fixed, we first update \mathbf{X}_0 , by minimizing

$$\hat{\mathbf{X}}_{0} = \min_{\mathbf{X}_{0}} \frac{1}{2} \| \mathbf{E}_{te} - \mathbf{D}_{te} \mathbf{X}_{0} \|_{F}^{2}; \text{ s.t.} \| \mathbf{x}_{0}^{m} \|_{0} \leq s_{0}(3)$$

where $\mathbf{E}_{te} = \frac{1}{\sqrt{p}} \left[\mathbf{E}_{1}^{\top}, \mathbf{E}_{2}^{\top}, \dots, \mathbf{E}_{p}^{\top} \right]^{\top}, \mathbf{E}_{i} = \mathbf{Y}_{i} - \mathbf{D}_{i} \mathbf{X}_{i}, \text{ and } \mathbf{D}_{te} \in \mathbb{R}^{np \times K_{0}}.$ Similarly, we find \mathbf{X}_{i}
by minimizing

$$\hat{\mathbf{X}}_i = \min_{\mathbf{X}_i} \frac{1}{2} \|\mathbf{B}_i - \mathbf{D}_i \mathbf{X}_i\|_F^2; \text{ s.t. } \|\mathbf{x}_i^m\|_0 \le s_i \quad (4)$$

where $\mathbf{B}_i = \mathbf{Y}_i - \mathbf{D}_0 \mathbf{X}_0.$

2. Dictionary Updates: To solve for \mathbf{D}_0 , we solve:

$$\hat{\mathbf{D}}_{0} = \min_{\mathbf{D}_{0}} \frac{1}{2} \|\mathbf{E}_{sp} - \mathbf{D}_{0}\mathbf{X}_{sp}\|_{F}^{2} + \frac{\eta}{2} \|\mathbf{D}_{0}^{\top}\mathbf{A}_{0}\|_{F}^{2} \quad (5)$$
where $\mathbf{E}_{sp} = [\mathbf{E}_{1}, \mathbf{E}_{2}, \dots, \mathbf{E}_{p}], \ \mathbf{E}_{i} = \mathbf{Y}_{i} - \mathbf{D}_{i}\mathbf{X}_{i}.$
Similarly, we find \mathbf{D}_{i} by solving:

 $\mathbf{\hat{D}}_{i} = \min_{\mathbf{D}_{i}} \frac{1}{2} \|\mathbf{B}_{i} - \mathbf{D}_{i}\mathbf{X}_{i}\|_{F}^{2} + \frac{\eta}{2} \|\mathbf{D}_{i}^{\top}\mathbf{A}_{i}\|_{F}^{2} \quad (6)$ where $\mathbf{B}_i = \mathbf{Y}_i - \mathbf{D}_0 \mathbf{X}_0$.

Algorithm Overview

Input: fMRI datasets $\mathbf{Y}_i, K_0, K_i, s_0, s_i, \eta$ **Initialization:** Initialize \mathbf{D}_0 , \mathbf{D}_i , \mathbf{X}_0 and \mathbf{X}_i for t = 1: noIt do Fix \mathbf{D}_0 , \mathbf{D}_i and use OMP to solve (3) for \mathbf{X}_0 and (4) for $\mathbf{X}_i \forall i = 1, \dots, p$. Fix \mathbf{X}_0 , \mathbf{X}_i and sequentially update \mathbf{D}_0 by solving (5) and \mathbf{D}_i by solving (6) $\forall i = 1, \ldots, p$. Output: $\mathbf{D}_0, \mathbf{X}_0, \mathbf{D}_i, \mathbf{X}_i$

Simulation Results

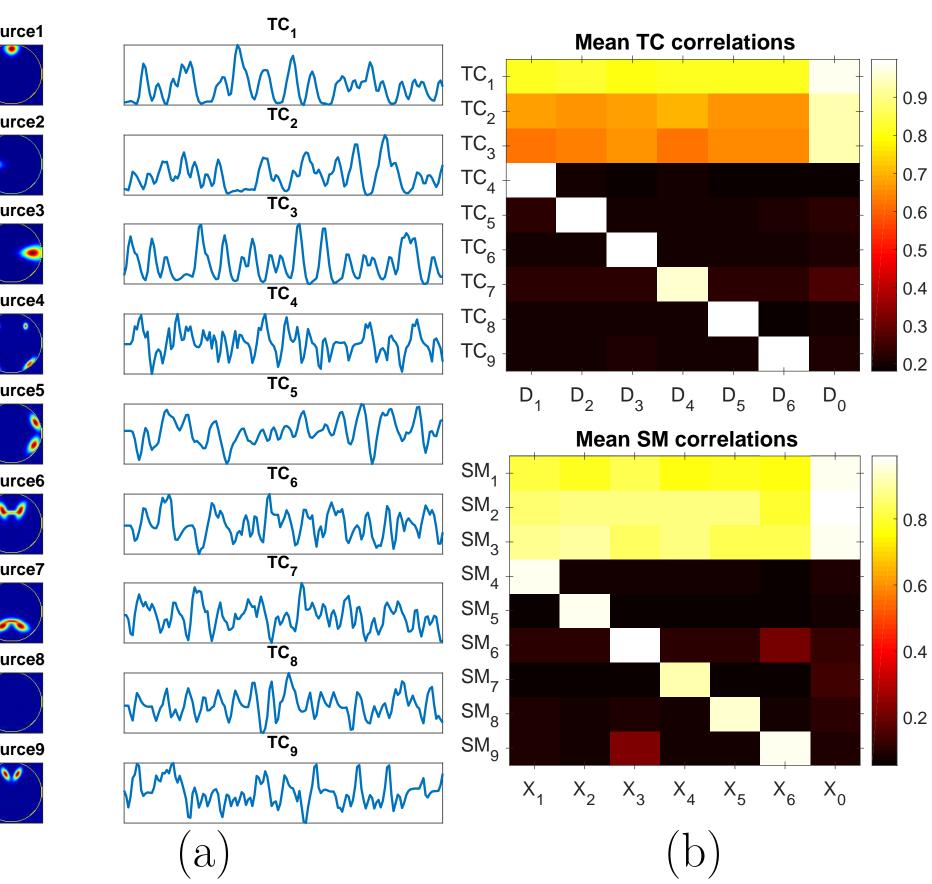


Figure 1: a) The simulated ground truth TC/SMs and their b) mean correlation coefficients w.r.t. $\mathbf{D}_0, \mathbf{D}_i$ and $\mathbf{X}_0, \mathbf{X}_i$ over 100 trials for SNR = 0 dB.

Table 1: Mean, median, and standard deviation of most correlated TCs and SMs w.r.t. GrTr over 100 trials.

SNR dB	Algo		TCs		SMs			
		Mean	Median	STD	Mean	Median	STD	
-10	Proposed	0.98	0.98	0.02	0.87	0.88	0.05	
	CODL	0.95	0.95	0.03	0.79	0.82	0.14	
15	Proposed	0.92	0.96	0.08	0.69	0.66	0.18	
-15	CODL	0.68	0.68	0.23	0.44	0.27	0.34	

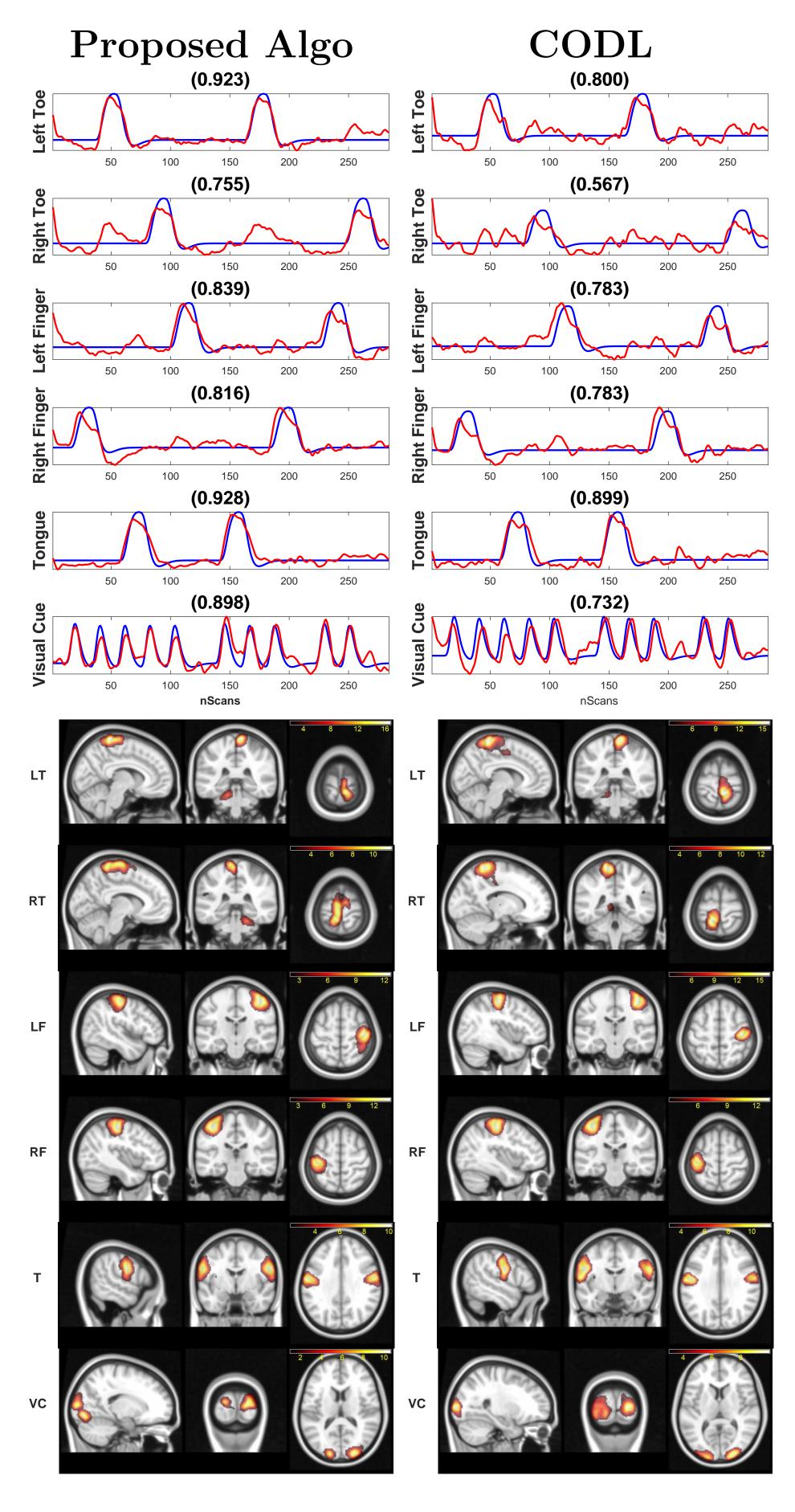


 Table 2: Correlation coefficients of most correlated spatial maps
 w.r.t. the RSN templates as recovered by proposed algorithm and CODL. RSN Propose CODL

THE UNIVERSITY OF MELBOURNE

Real fMRI Results

	1	2	3	4	5	6	7	8	9	10	Mean
sed	0.55	0.48	0.57	0.60	0.41	0.44	0.47	0.41	0.55	0.57	0.51
	0.72	0.71	0.43	0.47	0.31	0.34	0.36	0.31	0.49	0.37	0.45