

High-order Tensor Completion for Data Recovery via Sparse Tensor-train Optimization

Longhao Yuan^{1, 2}, Qibin Zhao^{2, 3, *}, and Jianting Cao^{4, 1, *}

¹ Graduate School of Engineering, Saitama Institute of Technology, Japan
² Tensor Learning Unit, RIKEN Center for Advanced Intelligence Project (AIP), Japan
³ School of Automation, Guangdong University of Technology, China
⁴ School of Computer Science and Technology, Hangzhou Dianzi University, China

•1. Background

•2. Sparse tensor-train optimization

•3. Experiments and results

•4. Conclusion

What is tensor?

Generalization of an *n*-dimensional array.

vector: 1st-order tensor

matrix: 2nd-order tensor

3rd-order tensor

What can tensor do?

A matrix can represent a 2-order relation. A tensor can represent a high-order relation.

Tensor-train Decomposition (TTD)

Decompose a tensor $\mathcal{X} \in \mathbb{R}^{I_1 \times I_2 \times \cdots \times I_N}$ to TT format:

Tensor completion by TT model

Find the low-rank TT decomposition by observed entries.

 $y_m = \boldsymbol{\mathcal{Y}}(i_1^m, i_2^m, \cdots, i_N^m)$

For **one** observed entry:

The approximation of TTD:
$$x_m = \prod_{n=1}^{N} \mathbf{G}_{i_n^m}^{(n)}$$

Loss function: $f(\mathbf{G}_{i_1^m}^{(1)}, \mathbf{G}_{i_2^m}^{(2)}, \cdots, \mathbf{G}_{i_N^m}^{(N)}) = \frac{1}{2} \left\| y_m - \prod_{n=1}^{N} \mathbf{G}_{i_n^m}^{(n)} \right\|_F^2$

The gradient for according slice of core tensor:

$$\frac{\partial f}{\partial \mathbf{G}_{i_n^m}^{(n)}} = (x_m - y_m) (\mathbf{G}_{i_n^m}^{>n} \mathbf{G}_{i_n^m}^{
$$\mathbf{G}_{i_n^m}^{>n} = \prod_{n=n+1}^N \mathbf{G}_{i_n^m}^{(n)}, \ \mathbf{G}_{i_n^m}^{$$$$

Where

For all the observed entries:

Loss function:

$$f(\mathcal{G}^{(1)}, \mathcal{G}^{(2)}, \cdots, \mathcal{G}^{(N)}) = \frac{1}{2} \sum_{m=1}^{M} \|y_m - x_m\|_F^2$$
$$\frac{\partial f}{\partial \mathbf{G}_j^{(n)}} = \sum_{\substack{m=1\\m:i_n^m = j}}^{M} (x_m - y_m) (\mathbf{G}_{i_n^m}^{>n} \mathbf{G}_{i_n^m}^{$$

Computational complexity: $O(MN^2R^3)$

Overcome the curse of dimensionality

Algorithm implementation:

- 1. Initialize core tensors.
- 2. Do gradient descent until stopping condition is satisfied.
- 3. Use optimized tensor cores to approximate missing entries.

Synthetic data:

 produced from a highly oscillating function.
Experiments by 3D, 5D, 7D, 9D tensors.

Conclusions:

 STTO performs well in 3D cases.
STTO outperforms others in highorder cases.

Simulation results

High-order tensorization for visual data

Tensorization for a 256×256×3 image

From 3-way to 9-way

1.Reshape 256×256×3 to 2×2×…×2×3 (17-way tensor).

2.Permute by {1 9 2 10 3 11 4 12 5 13 6 14 7 15 8 16 17}.

3.Reshape to 4×4×4×4×4×4×4×4×3 (9-way tensor).

Better data structure

. . .

The first order represent a 2×2 pixel block.

The second order represent four 2×2 pixel block.

This can catch more structure relation of data.

Improve performance of STTO. Able to deal with irregular missing.

Image data experiment sako

埼工大

Image completion overview:

Random missing results

	15%	10%	5%	2%	1%		1		Y					
Observed Rate														
STTO	A	A	A			Ground truth								
CP-WOPT	R													
FBCP						85%	90%	95%	98%	99%				
_	_	_	_	TT-WO	PT RSE	0.1233	0.1297	0.1416	0.2202	0.2638				
					PSNR	23.4877	22.6076	21.5282	18.9396	17.0029				
				CP-WO	PT RSE	18 9579	0.3169	0.5348	1.0918 7.8015	6.4071				
					PSIN DSIN	0 1440	0 1867	0.2422	0.3053	0.4971				
				FBCF	PSNR	22.2853	19.9410	17.5166	15.4784	14.5841				
						I								

埼工大

Special missing cases results

	Row missing	Block missing								
Completion object										
STTO										
CP-WOPT										
FBCP										
						row missing block missing				
		lena	peppers	sailboat	lena	peppers	sailboat			
		STTO	RSE	0.1138	0.1661	0.1767	0.1323	0.1611	0.1704	
		5110	PSNR	24.00	20.80	19.93	22.69	21.06	20.25	
		CP WOPT	RSE	0.5401	0.5546	0.5545	0.1746	0.2252	0.2082	
		PSNR	10.86	10.85	10.34	20.61	18.27	19.00		
	FRCP	RSE	0.5503	0.5594	0.5586	0.1498	0.1671	0.1764		
		I-DCI	PSNR	10.46	10.58	10.18	21.66	20.79	20.01	

Contributions:

- 1. Propose STTO algorithm with low computational complexity.
- 2. Provide tensorization method to transform low-order tensor visual data to high-order.
- 3. Obtain superior results in simulation and image data completion.

Future works:

- 1. Develop more scalable completion algorithm based on TTD.
- 2. Automatically determine TT-rank.

Thank you for your attention!

Comparison of applying tensorization

Loss function Gradient

Computational complexity

TT-WOPT
$$\begin{aligned} f(\mathcal{G}^{(1)}, \mathcal{G}^{(2)}, \cdots, \mathcal{G}^{(N)}) &= \frac{1}{2} \|\mathcal{Y}_w - \mathcal{X}_w\|_F^2 \\ \frac{\partial f}{\partial \mathbf{G}_{(2)}^{(n)}} &= (\mathbf{X}_{w(n)} - \mathbf{Y}_{w(n)})(\mathbf{G}_{(1)}^{>n} \otimes \mathbf{G}_{(n)}^{$$

STTO

$$f(\mathcal{G}^{(1)}, \mathcal{G}^{(2)}, \cdots, \mathcal{G}^{(N)}) = \frac{1}{2} \sum_{m=1}^{M} \|y_m - x_m\|_F^2$$
$$\frac{\partial f}{\partial \mathbf{G}_j^{(n)}} = \sum_{\substack{m=1\\m:i_n^m = j}}^{M} (x_m - y_m) (\mathbf{G}_{i_n^m}^{>n} \mathbf{G}_{i_n^m}^{$$

 $\mathcal{O}(MN^2R^3)$

TT-SGD

$$f(\mathbf{G}_{i_{1}^{m}}^{(1)}, \mathbf{G}_{i_{2}^{m}}^{(2)}, \cdots, \mathbf{G}_{i_{N}^{m}}^{(N)}) = \frac{1}{2} \left\| y_{m} - \prod_{n=1}^{N} \mathbf{G}_{i_{n}^{m}}^{(n)} \right\|_{F}^{2}$$
$$\frac{\partial f}{\partial \mathbf{G}_{i_{n}^{m}}^{(n)}} = (x_{m} - y_{m})(\mathbf{G}_{i_{n}^{m}}^{>n}\mathbf{G}_{i_{n}^{m}}^{$$

$${\cal O}(N^2R^3)$$