High-order Tensor Completion for Data Recovery via Sparse Tensor-train Optimization

Longhao Yuan¹, 2, Qibin Zhao², 3, *, and Jianting Cao4, 1, *

${ }^{1}$ Graduate School of Engineering, Saitama Institute of Technology, Japan
${ }^{2}$ Tensor Learning Unit, RIKEN Center for Advanced Intelligence Project (AIP), Japan
${ }^{3}$ School of Automation, Guangdong University of Technology, China
${ }^{4}$ School of Computer Science and Technology, Hangzhou Dianzi University, China

Outline

-1. Background
-2. Sparse tensor-train optimization
$\cdot 3$. Experiments and results
-4. Conclusion

Background

What is tensor?

Generalization of an n-dimensional array.

vector: 1st-order tensor

matrix: 2nd-order tensor

3rd-order tensor

What can tensor do?

A matrix can represent a 2-order relation.
A tensor can represent a high-order relation.

Tensor-train Decomposition (TTD)

Decompose a tensor $\mathcal{X} \in \mathbb{R}^{I_{1} \times I_{2} \times \cdots \times I_{N}}$ to TT format:

Core tensor: $\mathcal{G}^{(n)} \in \mathbb{R}^{r_{n-1} \times I_{n} \times r_{n}}$,
Silce: $\mathbf{G}^{(n)} \in \mathbb{R}^{r_{n-1} \times r_{n}}$,
TT-rank: $\left\{r_{0}, r_{1}, \cdots, r_{N}\right\}, r_{0}=r_{N}=1$,

$$
n=1,2, \cdots, N .
$$

For each element:

$$
x_{i_{1} \cdots i_{N}}=\prod_{n=1}^{N} \mathbf{G}_{i_{n}}^{(n)}
$$

Background

Tensor completion by TT model

Find the low-rank TT decomposition by observed entries.

STTO algorithm

For one observed entry:

The approximation of TTD: $x_{m}=\prod_{n=1}^{N} \mathbf{G}_{i n}^{(n)}$
Loss function: $\quad f\left(\mathbf{G}_{i_{1}^{2}}^{(1)} \mathbf{G}_{i_{2}^{2}}^{(2)}, \cdots, \mathbf{G}_{i_{N}^{N}}^{(N)}\right)=\frac{1}{2}\left\|y_{m}-\prod_{n=1}^{N} \mathbf{G}_{i_{n}^{n}}^{(n)}\right\|_{F}$

$$
y_{m}=\mathcal{Y}\left(i_{1}^{m}, i_{2}^{m}, \cdots, i_{N}^{m}\right)
$$

The gradient for according slice of core tensor:

$$
\frac{\partial f}{\partial \mathbf{G}_{i_{n}^{m}}^{(n)}}=\left(x_{m}-y_{m}\right)\left(\mathbf{G}_{i_{n}^{m}}^{>n} \mathbf{G}_{i_{n}^{m}}^{<n}\right)^{T},
$$

Where

$$
\mathbf{G}_{i_{n}^{m}}^{>n}=\prod_{n=n+1}^{N} \mathbf{G}_{i_{n}^{m}}^{(n)}, \mathbf{G}_{i_{n}^{m}}^{<n}=\prod_{n=1}^{n-1} \mathbf{G}_{i_{n}^{m}}^{(n)} .
$$

STTO algorithm

For all the observed entries:
Loss function: $\quad f\left(\mathcal{G}^{(1)}, \mathcal{G}^{(2)}, \cdots, \mathcal{G}^{(N)}\right)=\frac{1}{2} \sum_{m=1}^{M}\left\|y_{m}-x_{m}\right\|_{F}^{2}$
Gradient accumulation: $\frac{\partial f}{\partial \mathbf{G}_{j}^{(n)}}=\sum_{\substack{m=1 \\ m: i_{n}^{1}=j}}^{M}\left(x_{m}-y_{m}\right)\left(\mathbf{G}_{i m}^{>n} \mathbf{G}_{i n}^{<n}\right)^{T}$
Computational complexity: $\mathcal{O}\left(M N^{2} R^{3}\right)$ Overcome the curse $\begin{gathered}\text { Of dimensionality } \\ \text { of }\end{gathered}$
Algorithm implementation:

1. Initialize core tensors.
2. Do gradient descent until stopping condition is satisfied.
3. Use optimized tensor cores to approximate missing entries.

Simulations

Synthetic data:

1. produced from a highly oscillating function.
2. Experiments by 3D, 5D, 7D, 9D tensors.

Conclusions:

 1. STTO performs well in 3D cases. 2. STTO outperforms others in highorder cases.Simulation results

Image data experiment

High-order tensorization for visual data

Tensorization for a $256 \times 256 \times 3$ image
From 3-way to 9-way
1.Reshape $256 \times 256 \times 3$ to $2 \times 2 \times \ldots \times 2 \times 3$ (17-way tensor).
2.Permute by $\{19210311412513614715816$ 17\}.
3.Reshape to $4 \times 4 \times 3$ (9 -way tensor).

Better data structure

The first order represent a 2×2 pixel block.
The second order represent four 2×2 pixel block.

This can catch more structure relation of data.
Improve performance of STTO.
Able to deal with irregular missing.

Image data experiment

Image completion overview:

Image data experiment

Random missing results

Image data experiment

Special missing cases results

Conclusions

Contributions:

1. Propose STTO algorithm with low computational complexity.
2. Provide tensorization method to transform low-order tensor visual data to high-order.
3. Obtain superior results in simulation and image data completion.

Future works:

1. Develop more scalable completion algorithm based on TTD.
2. Automatically determine TT-rank.

Thank you for your attention!

Comparison of applying tensorization

Three-order

Nine-order

Nine-order VDT

Loss function

 Gradient
Computational complexity

TT-WOPT

$$
f\left(\mathcal{G}^{(1)}, \mathcal{G}^{(2)}, \cdots, \mathcal{G}^{(N)}\right)=\frac{1}{2}\left\|\mathcal{Y}_{w}-\mathcal{X}_{w}\right\|_{F}^{2} \quad \mathcal{O}\left(N I^{N}+N I^{N-1} R^{2}\right)
$$

STTO

$$
f\left(\mathcal{G}^{(1)}, \mathcal{G}^{(2)}, \cdots, \mathcal{G}^{(N)}\right)=\frac{1}{2} \sum_{m=1}^{M}\left\|y_{m}-x_{m}\right\|_{F}^{2}
$$

$$
\frac{\partial f}{\partial \mathbf{G}_{j}^{(n)}}=\sum_{\substack{m=1 \\ m: i_{n}^{m}=j}}^{M}\left(x_{m}-y_{m}\right)\left(\mathbf{G}_{i_{n}^{m}}^{>n} \mathbf{G}_{i_{n}^{<n}}^{<n}\right)^{T}
$$

$$
\mathcal{O}\left(M N^{2} R^{3}\right)
$$

$$
f\left(\mathbf{G}_{i_{1}^{m}}^{(1)}, \mathbf{G}_{i_{2}^{m}}^{(2)}, \cdots, \mathbf{G}_{i_{N}^{m}}^{(N)}\right)=\frac{1}{2}\left\|y_{m}-\prod_{n=1}^{N} \mathbf{G}_{i_{n}^{m}}^{(n)}\right\|_{F}
$$

$$
\frac{\partial f}{\partial \mathbf{G}_{i_{n}^{m}}^{(n)}}=\left(x_{m}-y_{m}\right)\left(\mathbf{G}_{i_{n}^{m}}^{>n} \mathbf{G}_{i_{n}^{i n}}^{<n}\right)^{T},
$$

