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Abstract

We propose a three dimensional (3-D) convolutional neural network (CNN) ar-
chitecture for multi-channel far-field ASR which processes time, frequency &
channel dimensions of the input spectrogram.

Introduction

Multi-speaker conversations in far-field environments pose a significant challenge
to ASR due to reverberation and multi-speaker overlaps.
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Fig. 1. Portion of meeting speech and corresponding spectrogram.

The availability of multi-channel signals can be leveraged for alleviating these
issues.

Prior Work

•Beamforming - designing a spatial filter to perform a delay and sum operation
[1]

• Swietojanski et al [4] proposed the use of features from each channel speech
directly as input.

•Training of neural networks on the raw signals optimized for the discriminative
cost function of the ASR[3].

Proposed 3-D CNN Architecture

The multi-channel audio segments are stacked in a 3-D fashion and fed as in-
put to the neural network model. The CNN layers perform the following 3-D

convolutional operation,

Y (i, j, k) =

Nx∑
x=1

Ny∑
y=1

Nz∑
z=1

X(i + x, j + y, k + z)K(x, y, z) (1)

where K is the 3-D kernel, X is the input multi-channel spectrogram, Y is the
output of the feature map and (Nx, Ny, Nz) represents the kernel size.

TDNN


LSTM
3−D Conv.
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Experiments and Results

Reverb Challenge LVCSR task

For the single speaker far-field experiments, we use the REVERB challenge
LVCSR task with first three microphones.

Model S-dt S-et R-dt R-et
DNN-Single-Chn. 12.7 13.6 31.8 37.5

CNN2D-Single-Chn 11.3 11.4 26.8 29.6
CNN2D-Multi-BF 9.7 10.0 24.8 26.4

CNN2D-Multi-BF + Dropout 10.7 11.5 26.7 27.5
CNN3D-Multi 9.8 10.3 26.7 28.4

CNN3D-Multi + Dropout 9.1 9.8 24.6 25.8

AMI Single Distant Microphone ASR

The performance of AMI-SDM experiments, shown below, is significantly im-
proved using a TDNN acoustic model over the HMM-GMM system. The se-
quence cost function further improves the WER. All further experiments use the
sequence training cost function.

Model Dev. Eval
HMM-GMM (LDA-MLLT-SAT) 59.5 64.0

TDNN (CE) 41.7 46.7
TDNN (Seq.) 40.2 44.1

CNN2D-TDNN (Seq.) 41.8 46.7
CNN2D-TDNN-LSTM (Seq.) 36.0 39.0

Attention-LSTM [5] 41.3 45.8
TDNN-LSTM [2] 37.4 40.4

AMI Multi Microphone ASR

Here, we use the first three recordings of the array microphone as input represen-
tation to the CNN3D model.

Model Dev. Eval
Layer1-(64 Filt.) Layer2-(32 Filt.) 34.8 37.4
Layer1-(96 Filt.) Layer2-(32 Filt.) 34.5 37.2

Layer1-(128 Filt.) Layer2-(64 Filt.) 34.4 37.4
Layer1-(256 Filt.) Layer2-(128 Filt.) 34.9 37.9

Layer1-(256 Filt.) Layer2-(128 Filt.) + Reg. 32.7 35.7
Layer1-(256 Filt.) Layer2-(128 Filt.) + Reg. and Sharing 32.6 35.4

Layer1-(256 Filt.) Layer2-(128 Filt.) + Reg., Sharing and Avg. pool 32.6 35.7
Layer1-(384 Filt.) Layer2-(192 Filt.) + Reg. and Sharing 32.7 35.7

Comparing with beamforming [1] approach.

Model Dev. Eval
CNN2D-TDNN-LSTM (single) 36.0 39.0

CNN2D-TDNN-LSTM (multi beamformed) 33.9 36.2
CNN3D-TDNN-LSTM (multi) 32.6 35.4

Summary

In this paper, we have proposed a three dimensional neural network consisting
of convolutional layers that receives input from time-frequency-channel dimen-
sions of the input. The CNN3D model improves the beamforming methods for
multi-channel ASR.
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