

Abstract

We propose a three dimensional (3-D) convolutional neural network (CNN) architecture for multi-channel far-field ASR which processes time, frequency & channel dimensions of the input spectrogram.

Introduction

Multi-speaker conversations in far-field environments pose a significant challenge to ASR due to reverberation and multi-speaker overlaps.

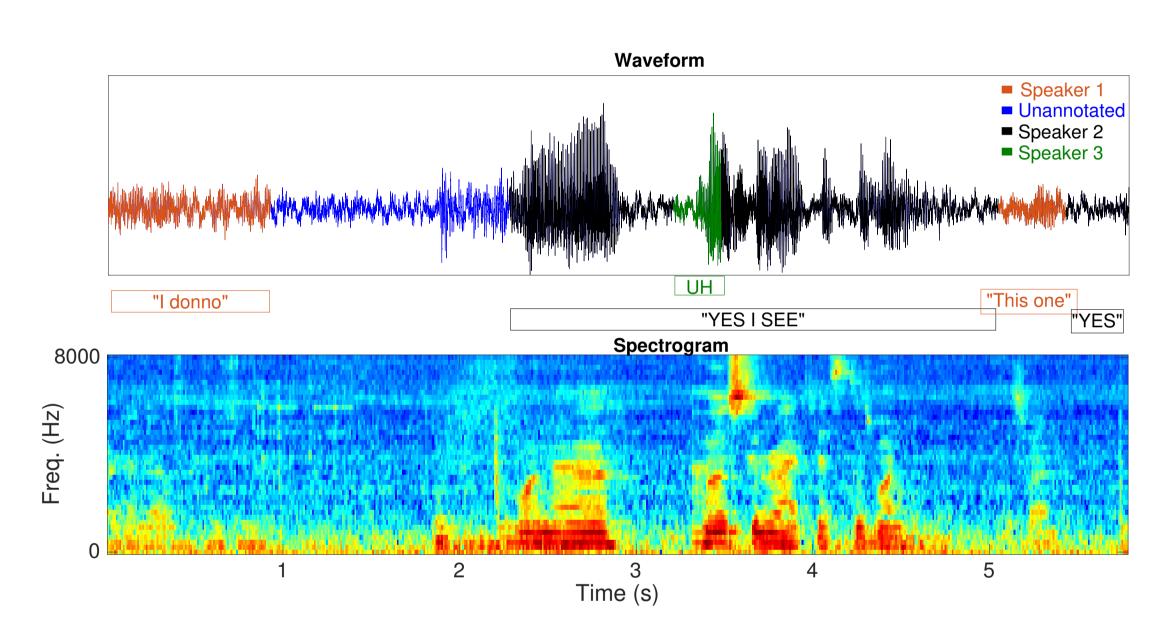


Fig. 1. Portion of meeting speech and corresponding spectrogram. The availability of multi-channel signals can be leveraged for alleviating these issues.

Prior Work

- Beamforming designing a spatial filter to perform a delay and sum operation [1]
- Swietojanski *et al* [4] proposed the use of features from each channel speech directly as input.
- Training of neural networks on the raw signals optimized for the discriminative cost function of the ASR[3].

Proposed 3-D CNN Architecture

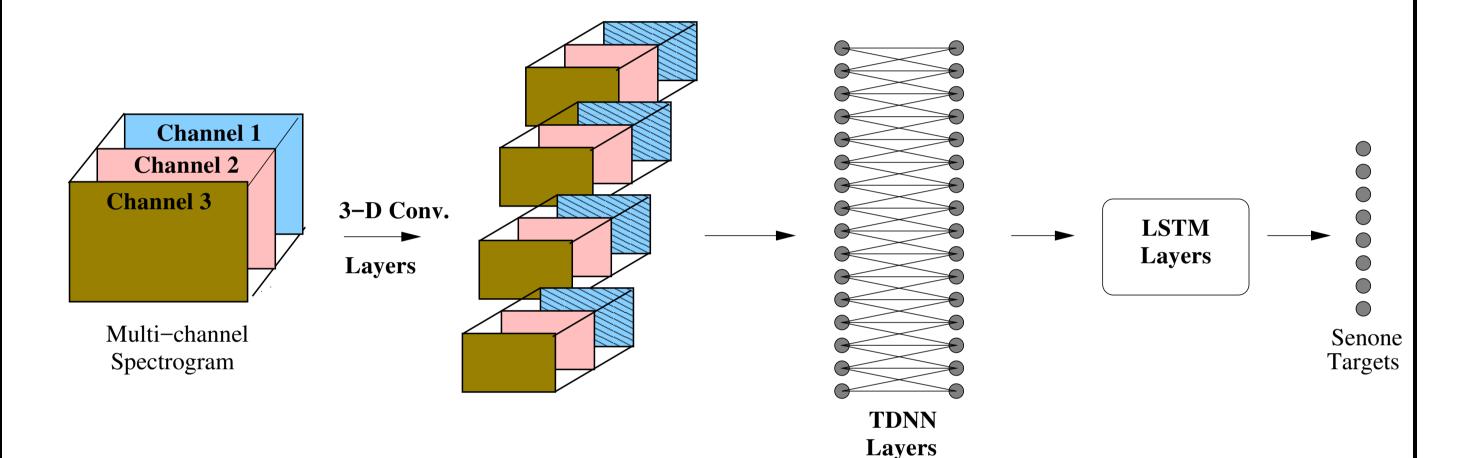
The multi-channel audio segments are stacked in a 3-D fashion and fed as input to the neural network model. The CNN layers perform the following 3-D

3-D CNN MODELS FOR FAR-FIELD MULTI-CHANNEL ASR Sriram Ganapathy^{*} and Vijayaditya Peddinti[†] *Learning and Extraction of Acoustic Patterns (LEAP) Labs, Indian Institute of Science, Bangalore. Google Inc., USA.

convolutional operation,

$$Y(i,j,k) = \sum_{x=1}^{N_x} \sum_{y=1}^{N_y} \sum_{z=1}^{N_z} X(i+x,j+y,k+z) K(x,y,z)$$
(1)

where K is the 3-D kernel, X is the input multi-channel spectrogram, Y is the output of the feature map and (N_x, N_y, N_z) represents the kernel size.



Experiments and Results

Reverb Challenge LVCSR task

For the single speaker far-field experiments, we use the REVERB challenge LVCSR task with first three microphones.

Model	S-dt	S-et	R-dt	R-et
DNN-Single-Chn.	12.7	13.6	31.8	37.5
CNN2D-Single-Chn	11.3	11.4	26.8	29.6
CNN2D-Multi-BF	9.7	10.0	24.8	26.4
CNN2D-Multi-BF + Dropout			26.7	
CNN3D-Multi	9.8	10.3	26.7	28.4
CNN3D-Multi + Dropout	9.1	9.8	24.6	25.8

AMI Single Distant Microphone ASR

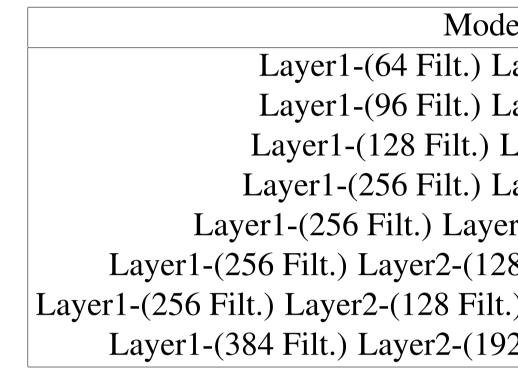
The performance of AMI-SDM experiments, shown below, is significantly improved using a TDNN acoustic model over the HMM-GMM system. The sequence cost function further improves the WER. All further experiments use the sequence training cost function.

> Model HMM-GMM (LDA-MLLT-SAT) TDNN (CE) TDNN (Seq.) CNN2D-TDNN (Seq.) CNN2D-TDNN-LSTM (Seq.) Attention-LSTM [5] TDNN-LSTM [2]

Dev.	Eval
59.5	64.0
41.7	46.7
40.2	44.1
41.8	46.7
36.0	39.0
41.3	45.8
37.4	40.4

AMI Multi Microphone ASR

Here, we use the first three recordings of the array microphone as input representation to the CNN3D model.



Comparing with beamforming [1] approach.

Mod CNN2D-TDNN-I CNN2D-TDNN-LSTM CNN3D-TDNN-

Summary

In this paper, we have proposed a three dimensional neural network consisting of convolutional layers that receives input from time-frequency-channel dimensions of the input. The CNN3D model improves the beamforming methods for multi-channel ASR.

Acknowledgement

The research reported here was conducted at the 2017 Frederick Jelinek Memorial-JHU Workshop hosted at Carnegie Mellon University.

References

- ing for speaker diarization of meetings. *IEEE TASLP*, 2007.
- *SPL*, 2017.
- works for automatic speech recognition. *IEEE/ACM TASLP*, 2017.
- networks for distant speech recognition. *IEEE SPL*, 2014.

lel	Dev.	Eval
Layer2-(32 Filt.)	34.8	37.4
Layer2-(32 Filt.)	34.5	37.2
Layer2-(64 Filt.)	34.4	37.4
Layer2-(128 Filt.)	34.9	37.9
er2-(128 Filt.) + Reg.	32.7	35.7
28 Filt.) + Reg. and Sharing	32.6	35.4
(.) + Reg., Sharing and Avg. pool	32.6	35.7
92 Filt.) + Reg. and Sharing	32.7	35.7
		/

lel	Dev.	Eval
LSTM (single)	36.0	39.0
(multi beamformed)	33.9	36.2
LSTM (multi)	32.6	35.4

[1] Xavier Anguera, Chuck Wooters, and Javier Hernando. Acoustic beamform-

[2] Vijayaditya Peddinti, Yiming Wang, Daniel Povey, and Sanjeev Khudanpur. Low latency acoustic modeling using temporal convolution and LSTMs. *IEEE*

[3] Tara N Sainath et al. Multichannel signal processing with deep neural net-

[4] Pawel Swietojanski, Arnab Ghoshal, and Steve Renals. Convolutional neural

[5] Yu Zhang, Pengyuan Zhang, and Yonghong Yan. Attention-based LSTM with multi-task learning for distant speech recognition. *INTERSPEECH*, 2017.