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Signals on Graphs
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Figure: Examples of graph signals.



Graph Signal Processing

Graphs and graph signals

Graph G(V, E)
Graph signal f ∈ RN , or a mapping f : V → R

Graph signal sampling and reconstruction

Sampling set S ⊆ V
Reconstruct f from the known samples {f(u)}u∈S
Conditions: Smooth or bandlimited signals on graph

Sampling

Reconstruction

Figure: Sampling and reconstruction of graph signals.



Laplacian-based Graph Signal Processing

The frequency domain of graph signals

Laplacian L = D−A

Frequencies 0 = λ1 < λ2 ≤ · · · ≤ λN

Fourier basis {uk}1≤k≤N

0 λ
Vertex Domain Frequency Domain

Figure: Vertex and frequency domains of a graph signal.

Bandlimited graph signals

The subspace of ω-bandlimited signals is called Paley-Wiener space
PWω(G) , span{ui|λi ≤ ω}
Bandlimited graph signal f ∈ PWω(G)



Existing Works on Graph Signal Sampling and Reconstruction

Uniqueness set and Paley-Wiener space (I. Pesenson, 2008)

Least-square reconstruction (S. Narang, A. Gadde and A. Ortega, 2013)

Iterative least square reconstruction (S. Narang, A. Gadde, E. Sanou and
A. Ortega, 2013)

TV-minimization reconstruction (S. Chen, A. Sandryhaila, J. Moura and J.
Kovacevic, 2014)

Local-set-based reconstruction (X. Wang, P. Liu and Y. Gu, 2014)

Sampling theorem (A. Anis, A. Gadde and A. Ortega, 2014; S. Chen, A.
Sandryhaila, J. Moura and J. Kovacevic, 2015)

Distributed algorithms (X. Wang, M. Wang and Y. Gu, 2015; S. Chen, A.
Sandryhaila, and J. Kovacevic, 2015)

Reconstruction through percolation (S. Segarra, A. Marques, G. Leus, A.
Ribeiro, 2015)
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Definitions

Centerless local sets

For a graph G(V, E), assume that V is divided into disjoint local sets {Ni}i∈I
satisfying

Each subgraph GNi is connected;⋃
i∈I Ni = V;

Ni ∩Nj = ∅, ∀i, j ∈ I, i 6= j.

Vertices
Edges
Local Sets

Figure: An illustration of centerless local sets.



Definitions

Local weight

A local weight ϕi ∈ RN associated with a centerless local set Ni satisfies

ϕi(v)

{
≥ 0, v ∈ Ni

= 0, v /∈ Ni

and
∑
v∈Ni

ϕi(v) = 1.

Local measurement

For given centerless local sets and the associated local weights {(Ni,ϕi)}i∈I ,
a set of local measurements for a graph signal f is {fϕi}i∈I , where

fϕi , 〈f ,ϕi〉 =
∑
v∈Ni

f(v)ϕi(v).



Decimation and Local Measurement

Vertices Edges

Positive signals

Negative signals

Positive measurements

Negative measurements

Decimation

Local 

Measurement

Figure: An illustration of traditional sampling (decimation) scheme versus generalized
sampling (local measurement) scheme.
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Local Propagation and Its Bound

Local propagation

For given {(Ni,ϕi)}i∈I on G(V, E), local propagation G is defined by

Gf = Pω

(∑
i∈I

〈f ,ϕi〉δNi

)
,

where Pω(·) is the projection operator onto PWω(G), and δNi is defined as

δNi(v) =

{
1, v ∈ Ni;

0, v /∈ Ni.

Lemma (bound of local propagation)

For given {(Ni,ϕi)}i∈I , ∀f ∈ PWω(G), the following inequality holds,

‖f −Gf‖ ≤ Cmax

√
ω‖f‖,

where Cmax = maxi∈I
√
|Ni|Di, and | · | denotes cardinality.



The Proposed Reconstruction Algorithm

Table: Iterative Local Measurement Reconstruction.

Input: Graph G, cutoff frequency ω, centerless local sets {Ni}i∈I ,

local weights {ϕi}i∈I , local measurements {fϕi}i∈I ;

Output: Interpolated signal f (k);

Initialization: f (0) = Pω

(∑
i∈I

fϕiδNi

)
;

Loop: f (k+1) = f (k)+Pω

(∑
i∈I

(fϕi − 〈f
(k),ϕi〉)δNi

)
;

Until: The stop condition is satisfied.



The Proposed Reconstruction Algorithm

Delay
Local 
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Lowpass 
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Figure: The procedures of ILMR.



The Convergence of ILMR

Proposition 1 (convergence of ILMR)

For given {(Ni,ϕi)}i∈I and ω < 1/C2
max, ∀f ∈ PWω(G) can be reconstructed

from its local measurements {fϕi}i∈I through ILMR, with the error at the kth
iteration satisfying

‖f (k) − f‖ ≤ γk‖f (0) − f‖,

where γ = Cmax
√
ω.

Remarks

{ϕi}i∈I is even not necessarily known in ILMR if the local measurements
come from the result of some repeatable physical operations or black
boxes.

ILMR can be approximately implemented in a localized way. The
projection operator Pω(·) can be approximated by a Chebychev polynomial
expansion of the Laplacian [1].

[1] D. K. Hammond, P. Vandergheynst, and R. Gribonval, “Wavelets on graphs via spectral graph

theory,” Appl. Comput. Harmonic Anal., vol. 30, no. 2, pp. 129-150, 2011.
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Gaussian Noise and Optimal Local Weights

Proposition 2 (expected error under Gaussian noise)

For given {(Ni,ϕi)}i∈I , the original signal f ∈ PWω(G), assuming the noise
associated with vertex v follows independent Gaussian distribution N (0, σ2(v)),
if ω < 1/C2

max, the reconstruction error of ILMR in the kth iteration satisfies

E
{
‖f̃ (k) − f‖

}
≤ 1

1− γ

√
2

π

∑
i∈I

√
|Ni|σi +O

(
γk+1

)
,

where σi is the variance of the zero-mean Gaussian equivalent noise ni of Ni,

σ2
i =

∑
v∈Ni

σ2(v)ϕ2
i (v).

Corollary 1 (optimal local weights)

For given {Ni}i∈I , if the noises associated with the vertices are independent
and n(v) ∼ N (0, σ2(v)), then the optimal local weights {ϕi}i∈I are

ϕi(v) =
(σ2(v))−1∑

v∈Ni
(σ2(v))−1

δNi(v).



Independent and Identical Distributed Gaussian Noise

Corollary 2 (expected error under i.i.d. Gaussian noise)

For given centerless local sets {Ni}i∈I and the associated weights
ϕi(v) = 1/|Ni| for v ∈ Ni, the original signal f ∈ PWω(G), assuming the noise
associated with each vertex follows i.i.d Gaussian distribution N (0, σ2), if
ω < 1/C2

max, the expected reconstruction error of ILMR in the kth iteration
satisfies

E
{
‖f̃ (k) − f‖

}
≤ |I|σ

1− γ

√
2

π
+O

(
γk+1

)
.



Table: A greedy method to partition centerless local sets with maximal cardinality.

Input: Graph G(V, E), Maximal cardinality Nmax;

Output: Centerless local sets {Ni}i∈I ;

Initialization: i = 0;

Loop Until: V = ∅
1) Find one vertex with the smallest degree in G, u = argmin

v∈V
dG(v);

2) i = i+ 1, Ni = {u};
3) Obtain the neighbor set of Ni, Si = {v ∈ G|v ∼ w,w ∈ Ni, v /∈ Ni};
Loop Until: |Ni| = Nmax or Si = ∅

4) Find one vertex with the smallest degree in Si, u = arg min
v∈Si

dG(v);

5) Ni = Ni ∪ {u};
6) Update Si = {v ∈ G|v ∼ w,w ∈ Ni, v /∈ Ni};

End Loop

7) Remove the edges, E = E\{(p, q)|p ∈ Ni, q ∈ V};
8) Remove the vertices, V = V\Ni and G = G(V, E);

End Loop
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Local Weight Choices

The Minnesota road graph is used in the experiments, which has 2640 vertices
and 6604 edges. The centerless local sets are generated by the greedy
algorithm. Five kinds of local weights are tested.

1 uniform weight, where ϕi(v) = 1/|Ni|,∀v ∈ Ni;

2 random weight, where

ϕi(v) =
ϕ′i(v)∑

u∈Ni
ϕ′i(u)

, ∀v ∈ Ni, ϕ
′
i(u) ∼ U(0, 1);

3 Kronecker delta weight, where ϕi = δu for a random u ∈ Ni;

4 the optimal weight, where

ϕi(v) =
(σ2(v))−1∑

v∈Ni
(σ2(v))−1

δNi(v);

5 the optimal Kronecker delta weight, where ϕi = δu for

u = arg min
u∈Ni

σ2(u).



Convergence of ILMR
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Uniform Weights, Nmax=4
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Figure: The convergence behavior of ILMR for various division of centerless local sets
and different local weights (cases 1, 2, and 3).



Optimal Local Weights for Gaussian Noise
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Figure: The convergence curves of reconstruction with uniform weights, the optimal
weights, and optimal Kronecker delta weights when independent zero-mean Gaussian
noise is added to each vertex (cases 1, 4, and 5).



Performance against i.i.d. Gaussian Noise
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Figure: Relative errors of ILMR under different SNRs with various choices of local
weights (cases 1, 2, and 3). The noise associated with each vertex is i.i.d. Gaussian.



The End

Thank you!

Xiaohan Wang: wangxiaohan11@mails.tsinghua.edu.cn

Yuantao Gu: gyt@tsinghua.edu.cn

Gu-Lab: http://gu.ee.tsinghua.edu.cn
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