# **EFFICIENT SUPER-WIDE BANDWIDTH EXTENSION USING LINEAR PREDICTION BASED ANALYSIS-SYNTHESIS**

| Introduction                                                                                                                                                                                                  |                |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
| traditional telephony infrastructure is typically limited to a bandwidth of 0.3-3.4 kHz, referred as narrowband (NB)                                                                                          | x <sub>w</sub> |
| wider bandwidths generally correspond to higher quality speech                                                                                                                                                | *              |
| artificial bandwidth extension (ABE) methods estimate missing frequency components at 3.4-8kHz                                                                                                                |                |
| today's devices are capable of supporting wideband (WB)<br>and super-wideband (SWB) communications at<br>bandwidths 7kHz and 14kHz respectively                                                               |                |
| the adaptive multi-rate WB (AMR-WB) and enhanced voice services (EVS) codecs are respective examples                                                                                                          |                |
| until all network services and devices move to super-wide<br>bandwidth, SWB devices may often be restricted to NB or<br>WB communications                                                                     |                |
| super-wide bandwidth extension (SWBE) approaches,<br>therefore, are used to estimate missing high frequency<br>(HF) components between 8-16kHz from available low<br>frequency (LF) components between 0-8kHz |                |
| Past work                                                                                                                                                                                                     |                |
| ABE algorithms are usually classified as blind and non-<br>blind                                                                                                                                              | -              |
| non-blind algorithms perform ABE using auxiliary side HF information encoded with LF components                                                                                                               | nde (dB)       |
| <ul> <li>this extra information incurs an additional burden on<br/>bit rate</li> </ul>                                                                                                                        | Magnit         |
| <ul> <li>e.g. EVS codec (SWB mode), extended AMR-WB<br/>(AMR-WB+) codec, high efficiency advanced audio<br/>codec (HE-AAC)</li> </ul>                                                                         |                |
| in contrast, blind algorithms use only the LF information                                                                                                                                                     |                |
| most existing SWBE algorithms use statistical estimation techniques to predict the missing HF information                                                                                                     |                |
| this extra estimation step augments complexity and introduces latency                                                                                                                                         |                |
| Contributions                                                                                                                                                                                                 |                |
| $\Box$ an efficient energe ach te OMDE bessel er l'                                                                                                                                                           |                |
| (LP) analysis synthesis                                                                                                                                                                                       |                |
| the missing HF components are extracted from the WB-<br>LP spectral envelope without any statistical estimation                                                                                               |                |
| SWBE is performed without increasing complexity or<br>latency                                                                                                                                                 |                |
| performance is compared to a state-of-the-art EVS codec                                                                                                                                                       |                |
|                                                                                                                                                                                                               |                |

Pramod Bachhav, Massimiliano Todisco and Nicholas Evans **EURECOM**, France Emails: {bachhav, todisco, evans}@eurecom.fr





Presented by Pramod Bachhav at 43rd IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) 2018, Calgary, Canada.



- □ baseline does not need any statistical estimation and performs comparable to recent approach presented in [2]
- □ input to both the proposed approach and the baseline are the WB signals processed with AMR-WB codec at 12.65 kbps
- extended signals using proposed approach are also compared to SWB signals processed with the EVS codec at 13.2kbps



Protocol used for data pre-processing. LA = level alignment to -26 dBov.

### **Experimental results**

|          | Proposed     | EHBE         | EVS         |
|----------|--------------|--------------|-------------|
| J Arctic | 10.13 (1.68) | 11.74 (2.03) | 5.00 (0.48) |
| GPP      | 11.06 (1.90) | 13.56 (2.30) | 4.87 (0.39) |
| speech   | 9.29 (0.84)  | 10.20 (1.04) | 4.74 (0.51) |
| erage    | 9.92 (1.56)  | 11.36 (1.96) | 4.94 (0.50) |
|          |              |              |             |

RMS-LSD results in dB (standard deviation).

- - the possible reason

# **Conclusions and future work**

- codec neutral
- codec)

| [1] E. Larsen et<br>and speech." in |
|-------------------------------------|
|                                     |
| [2] CC. Bao e                       |
| based on pha                        |
| Speech and M                        |
|                                     |
| [3] "Codec                          |
| description (3G                     |
| 4] M. Florentin                     |
| from 0 25 to 16                     |
|                                     |

Prop -> AMR-WB Prop -> EVS Prop -> EHBE

Subjective test results in terms of CMOS for bandwidth extended speech generated with the proposed (Prop) algorithm (A) versus either AMR-WB, EVS and EHBE processed speech (B). Each bar indicates the relative frequency that (blue bars) A was preferred to B (score>0), that (green bars) quality was indistinguishable (score=0), or that (red bars) B was preferred to A (score< 0). Scores illustrated to the top are average subjective scores.

### Discussion

• despite improvements in objective results, preference for the proposed approach is slightly lower than the EHBE baseline

□ this is possibly because of implementation differences. Time domain processing used for the baseline without framing leads to less artefacts

□ compared to RMS-LSD performance gap, preference for the EVS processed speech signals in subjective tests is marginal

□ reduced level discrimination at higher frequencies [4] maybe

□ a simple yet effective SWBE approach is presented

no need for statistical estimation

• could be more efficient than the baseline, if used with a codec employing some form of linear prediction (e.g. AMR-WB

□ future work: thorough investigation and comparison of complexity and latency for suitable real time implementations

## Selected References

et. al, "Efficient high frequency bandwidth extension of music in 112<sup>th</sup> Audio Engineering Society Convention, 2002

et.al, "A blind bandwidth extension method for audio signals ase space reconstruction," EURASIP Journal on Audio, *Music Processing*, 2014

for Enhanced Voice Services; Detailed algorithmic GPP TS 26.445 ver. 13.4.0 rel. 13)," 2016

ne et al., "Level discrimination as a function of level for tones kHz," Journal of the Acoustical Society of America, 1987.