Fast Projection onto the $\ell_{\infty, 1}$-Mixed Norm Ball using Steffensen Root Search

Gustavo Chau ${ }^{\dagger} \quad$ Brendt Wohlberg ${ }^{\star} \quad$ Paul Rodriguez ${ }^{\dagger}$

${ }^{\dagger}$ Electrical Engineering Department, Pontificia Universidad Católica del Perú, Lima, Peru
*Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM, USA

Abstract

We present a new algorithm for computing the pro-

 jection onto the $\ell_{\infty, 1}$ ball.Improvements: Steffensen type root search technique pruning strategy and initial guess of solution.
Simulations: Average speedups of $4 \sim 5$ w.r.t. state of the art. Up to 14 times faster for very sparse solutions.
fMRI LASSO task: Speedups of ~ 120.

Introduction

- Mixed norms are important in modeling group correlations [1]. Let $\mathbf{A} \in \mathbb{R}^{M \times N}$, where the rows represent the different groups. The $\ell_{\infty, 1}$-norm is defined as $\|\mathbf{A}\|_{\infty, 1}=$ $\sum_{m=1}^{M}\left\|\mathbf{a}_{m}\right\|_{\infty}$
- The main contribution of this work is a computationally efficient algorithm for computing the projection onto the $\ell_{\infty, 1}$ ball:

$$
\begin{equation*}
\operatorname{proj}_{\|\cdot\|_{\infty, 1}}(\mathbf{B}, \tau):=\underset{\mathbf{X}}{\operatorname{argmin}} \frac{1}{2}\|\mathbf{X}-\mathbf{B}\|_{F}^{2} \text { s.t. }\|\mathbf{X}\|_{\infty, 1} \leq \gamma \tag{1}
\end{equation*}
$$

- Sra [2] proposed a general root search based algorithm for mixed-norm ball projection problems
- We propose two significant improvements: (i) a feasible initial solution, and (ii) pruning.

References

[1] M. Kowalski, "Sparse regression using mixed norms," Applied and Computational Harmonic Analysis, vol. 27, no. 3, pp. 303-324, 2009.
[2] S. Sra, "Fast projections onto $\ell_{1, q}$-norm balls for grouped feature selection," Machine learning and knowledge discovery in databases, pp. 305-317, 2011.
[3] S. Amat, S. Busquier, Á. Magreñán, and L. Orcos "An overview on Steffensen-type methods," Advances in Iterative Methods for Nonlinear Equations. Springer, 2016, pp. 5-21.
[4] T. M. Mitchell, S. V. Shinkareva, A. Carlson, K.-M. Chang, V. L. Malave, R. A. Mason, and M. A. Just, "Predicting human brain activity associated with the meanings of nouns," science, vol. 320, no. 5880, pp. 1191-1195, 2008

Proposed method

- By duality, $\mathbf{X}^{*}+\mathbf{A}^{*}=\mathbf{B},\left(X^{*}\right.$ is solution to (1)) where:

$$
\left[\mathbf{a}_{\mathbf{1}}^{*} ; \ldots ; \mathbf{a}_{\mathbf{M}}^{*}\right]=\mathbf{A}^{*}=\min _{\mathbf{A}} \frac{1}{2}\|\mathbf{A}-\mathbf{B}\|_{F}^{2}+\lambda \cdot\|\mathbf{A}\|_{1, \infty}
$$

If we had $\gamma^{*}=\left\|\mathbf{A}^{*}\right\|_{1, \infty}$ then the problem would be separable in each row, i.e., $\mathbf{a}_{\mathbf{m}}^{*}=\operatorname{proj}_{\|\cdot\|_{1}}\left(\mathbf{b}_{m}, \gamma^{*}\right)$.
We define the search function

$$
g(\gamma)=\sum \max \left(\mathbf{b}_{\mathrm{m}}-\mathbf{a}_{\mathrm{m}}(\gamma)\right)-\tau
$$

A^{*} is obtained with $g\left(\gamma^{*}\right)=0$.

$$
\mathbf{a}_{m}(\gamma)= \begin{cases}\mathbf{b}_{m} & \text { if }\left\|\mathbf{b}_{m}\right\|_{1}<\gamma \\ \operatorname{shrink}\left(\mathbf{b}_{m}, \lambda(\gamma)\right) & \text { if }\left\|\mathbf{b}_{m}\right\|_{1} \geq \gamma\end{cases}
$$

Pruning: Only the $\mathbf{b}_{\mathbf{m}}$ with $\left\|\mathbf{b}_{\mathbf{m}}\right\|_{1} \geq \gamma$ contribute to the sum in $g(\gamma)$.
Problem reduces to finding γ^{*} though a root-finding procedure over g. We use Steffensen's root search [3]:

$$
\begin{equation*}
\gamma_{n+1}:=\gamma_{n}+\gamma_{n} \frac{y_{n}-\gamma_{n}}{g\left(y_{n}\right)-g\left(\gamma_{n}\right)}, \quad y_{n}=\gamma_{n}+\delta_{n}\left|g\left(\gamma_{n}\right)\right| . \tag{3}
\end{equation*}
$$

- Initial Point: Compute $\sigma_{k}=\left\|\operatorname{shrink}\left(b_{k}, \tau\right)\right\|_{1}$ for each row of B and take $\gamma_{0}=\max _{k}\left(\sigma_{k}\right)$. It can be shown that $0 \leq \gamma_{0} \leq \gamma^{*}$

Results: simulations

Synthetic $\mathbf{B} \sim \mathcal{U}([-0.5,0.5])$ (100 realizations). Constraint $\tau=\alpha\|\mathbf{B}\|_{\infty, 1}, \alpha \in\left\{10^{-4}, 5 \times 10^{-4}, 10^{-3}\right\}$

Figure 1: Impact of initial point

Figure 2: Speedup w.r.t. to Sra [2]
Results: fMRI task results

- Data from fMRI prediction of word response based on cooccurrence matrix [4]
Solve $\min _{\mathbf{W}} \frac{1}{2}\|\mathbf{Y}-\mathbf{X W}\|_{2}^{2}$ s.t. $\|\mathbf{W}\|_{\infty, 1} \leq \tau$ by projected gradient descent (PGD). In each step we use our proposed algorithm or Sra [2].

Figure 3: Time per PGD iteration for solving the $\ell_{\infty, 1}$ projection problem Speedups of ~ 120 (10 hours $\rightarrow 3$ minutes)

Figure 4: Distribution of $\left\|\mathbf{b}_{\mathbf{m}}\right\|_{1}$ values (red) and optimal γ value (blue). This data distribution explains the higher speedups obtained in the fMRI dataset.

Conclusion

- New algorithm for projection onto the $\ell_{\infty, 1}$-norm ball with speedups of around 5-6 times or more. Higher speedups with favorable sparsity conditions or data distributions.

