End-to-End DNN based speaker recognition inspired by i-vector and PLDA

ICASSP 2018, Calgary

Johan Rohdin, Anna Silnova, Mireia Diez, Oldrich Plchot, Pavel Matejka, Lukas Burget

18th April 2018

Background

• i-vectors and PLDA have been the state-of the art for many years

- Parts of i-vector+PLDA systems have been replaced by NNs
 - MFCCs → bottleneck features¹, UBM → DNN acoustic models² PLDA → DBNs³, UBM and T-matrix → single NN^{4,5}
- End-to-end systems replace the whole system by one NN
 - Successful for short utterances^{6,7} but less successful for long⁷
 - Usually trained on short utterances
 - Training on long utterances may overfit and requires large memory

[1] Lozano-Diez et al. Odyssey 2016; [2] Lei et al. ICASSP 2014; [3] Ghahabi et al. ICASSP 2014; [4] Variani et al. ICASSP 2014; [5] Snyder et al. SLT 2016; [6] Heighold et al. 2016; [7] Snyder et al. SLT 2016

This work

- Develop an end-to-end system that is initialized to mimic an i-vector + PLDA system, then refined with end-to-end training
 - 1. First develop the individual blocks:
 - Feature to stats (**f2s**) NN: Collection of sufficient statistics
 - Stats to ivector (i2s) NN: i-vector calculation
 - **DPLDA**: Scoring
 - 2. Plug the blocks together and optimize them jointly for the speaker verification task, i.e., with end-to-end training on long and short utterances
- To find good architecture and initialization for end-to-end training
- Avoid overfitting by regularizing towards initial model
- Good performance on long and short multi language conditions

Data and baselines

- Training data based on PRISM dataset
 - SRE 04-10, Fisher, Switchboard
 - UBM, iXtractor uses all training data
 - PLDA and DPLDA use only telephone data but use also short cuts created from non-English and non-native-English data
- Testing on language PRISM condition and SRE16 single enroll
 - We also cut PRISM lang into short segments to mimic SRE16
- All of our features are standard MFCCs+ Δ + $\Delta\Delta$ (60 dimensions)
- Baselines are generative and discriminative PLDA based on 600-dimensional i-vectors extracted with 2048-component diagonal-covariance UBM

A: categorical cross-entropy

Features to sufficient statistics (f2s)

- Train NN to predict UBM responsibilities
- Input: processed and expanded features
 - Dimensionality: 360
 - Context: 30 Frames
- Output: GMM responsibilities
- Training objective: Categorical cross-entropy (soft targets)
- Given features and responsibilities, calculate sufficient statistics

f2s Architecture

Developments on SRE10, core-core condition 5

Model	EER [%]	mindcf0.01	mindcf0.005
Baseline (GMM)	2.37	0.245	0.294
NN (60_1500_1500_2048)	2.27	0.242	0.293
NN (360_1500_1500_2048)	2.20	0.231	0.278
NN (360_1500_1500_1500_1500_2048)	2.17	0.228	0.279

- Larger context results in better predictions of the responsibilities
 - Probably because of increased robustness to unseen test conditions

Sufficient statistics to i-vectors (s2i)

- Model for initializing e2e system is trained on the output from f2s
- Input preprocessing
 - a. Calculate relevance MAP adapted supervector (r=16)
 - b. Reduce it by PCA from 2048 x 60 = 122880 to 4000 dim.
- 2 hidden layers with 600 units, tanh activation functions followed by affine transform and "length-norm"
- Output: LDA reduced and length-normalized i-vectors
- Training objective: Cosine distance

	EER [%]	mdcf0.01	mdcf0.005	
BASELINE	2.41	0.246	0.295	

Developments on SRE10, core-core condition 5

- PCA dimension: 4000 (higher was not better), NN (4000_600_600_600)
- Mean square error objective

S2i architecture

Target ivectors	NN Output	EER [%]	mdcf0.01	mdcf0.005
Length norm	Affine	2.86	0.290	0.346
WC norm. + Length norm	Affine	2.76	0.276	0.321
WC norm. + Length norm	Affine + Length norm.	2.59	0.270	0.313

• Cosine distance objective

WC norm. + Length norm	Linear -> Length norm	2.56	0.269	0.311
+ LDA	Affine + Length norm.	2.55	0.257	0.310
+ L1 reg	Affine + Length norm.	2.43	0.256	0.306

- The DPLDA baseline is trained iteratively using full batches (L-BFGS)
- For joint training with other blocks we use minibatches
- Minibatch approach in experiments:
 - a. Group all utterances into pairs of the same speakers
 - b. Shuffle the pairs
 - c. Select *N* pairs (without replacement) to form a minibatch

• Training objective: Binary cross-entropy for all trials in the batch

Effect on target trials

Alternative method

All utterances of the same speaker in one batch

Used method

Generally 2 utterances per speaker in each batch

Many but dependent

Fewer but less dependent

- Total weight of each speaker may change for the used method (and sets if their average number of utterances per speaker differs)
- In DPLDA experiments the alternative method did not work well

Memory issues in end-to-end system

- f2s processes frames. Number of intermediate values needed in training: #Frames*(360+1500+1500+1500+2048)
- When **f2s** is trained independently, one frame from a many different utterances can be used
- For **e2e** we need many full utterances per batch so the number of frames is large
- We discard intermediate values from forward prop. of f2s and recalculate them during backprop. (Similar to Theano's scan_checkpoints)
- With this trick we can use around ~30 utterances per minibatch instead of ~5 on a GPU with 4GB
- The parameters (mainly the PCA matrix) of the network itself uses about 3GB

Results

Average of minDCF0.01 and minDCF0.005

=Joint training

System	UBM	i-extractor	PLDA	SRE16	PRISM Short	PRISM Long
Baseline	GMM	Т	Gen.	0.988	0.699	0.411
Baseline DPLDA	GMM	Т	Discr.	0.975	0.616	0.360
f2s	NN	Т	Gen.	0.980	0.687	0.394
s2i	GMM	NN	Gen.	0.988	0.788	0.430
f2s+s2i	NN	NN	Gen	0.982	0.780	0.432
f2s+s2i+DPLDA	NN	NN	Discr.	0.953	0.597	0.300
s2i+DPLDA - joint <i>N</i> =5000	NN	NN	Discr.	0.936	0.586	0.287
All - joint, N=10	NN	NN	Discr.	0.936	0.587	0.289

Conclusions

- Neural networks can mimic estimation of responsibilities and i-vector extraction reasonably well
- Fine-tuning of the initialized network with binary cross-entropy criteria improves the performance
- Main improvement of joint training comes from refining of **s2i** module
 - **DPLDA** module does not change much
 - **f2s** module hard to train since we can use only small batches
- Future work:
 - Better joint training of the three blocks
 - Selection of suitable (difficult) training trials
 - Explore different training objectives, multiple enrollment sessions
 - Update PCA matrix and feature transform
 - Replace **f2s** with lighter network
 - Experiment with less constrained/regularized network

Thank you! Questions?