
End-to-End DNN based 
speaker recognition inspired 

by i-vector and PLDA

Johan Rohdin, Anna Silnova, Mireia Diez, Oldrich Plchot, 
Pavel Matejka, Lukas Burget

18th April 2018

ICASSP 2018, Calgary



● i-vectors and PLDA have been the state-of the art for many years

● Parts of i-vector+PLDA systems have been replaced by NNs

○ MFCCs → bottleneck features1, UBM → DNN acoustic models2

PLDA → DBNs3, UBM and T-matrix → single NN4,5

● End-to-end systems replace the whole system by one NN

○ Successful for short utterances6,7  but less successful for long7 

○ Usually trained on short utterances

○ Training on long utterances may overfit and requires large memory

Background

[1] Lozano-Diez et al. Odyssey 2016; [2] Lei et al. ICASSP 2014; [3] Ghahabi et al. ICASSP 2014; [4] Variani et al. ICASSP 2014; [5] Snyder et al. 
SLT 2016; [6] Heighold et al. 2016; [7] Snyder et al. SLT 2016  
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This work

● Develop an end-to-end system that is initialized to mimic an i-vector + 
PLDA system, then refined with end-to-end training

1. First develop the individual blocks:
○ Feature to stats (f2s) NN: Collection of sufficient statistics
○ Stats to ivector (i2s) NN: i-vector calculation 
○ DPLDA: Scoring 

2. Plug the blocks together and optimize them jointly for the speaker 
verification task, i.e., with end-to-end training on long and short 
utterances

● To find good architecture and initialization for end-to-end training
● Avoid overfitting by regularizing towards initial model
● Good performance on long and short multi language conditions 



Data and baselines

● Training data based on PRISM dataset

○ SRE 04-10, Fisher, Switchboard

○ UBM, iXtractor uses all training data

○ PLDA and DPLDA use only telephone data but use also short cuts 

created from non-English and non-native-English data

● Testing on language PRISM condition and SRE16 single enroll

○ We also cut PRISM lang into short segments to mimic SRE16

● All of our features are standard MFCCs+Δ+ΔΔ (60 dimensions)

● Baselines are generative and discriminative PLDA based on 

600-dimensional i-vectors extracted with 2048-component 

diagonal-covariance UBM



Features to sufficient statistics (f2s)

● Train NN to predict UBM 

responsibilities

● Input: processed and expanded 

features 
○ Dimensionality: 360

○ Context: 30 Frames

● Output: GMM responsibilities

● Training objective: Categorical 

cross-entropy (soft targets)

● Given features and responsibilities,  

calculate sufficient statistics



f2s Architecture

Developments on SRE10, core-core condition 5

● Larger context results in better predictions of the responsibilities
○ Probably because of increased robustness to unseen test 

conditions

Model EER [%] mindcf0.01 mindcf0.005

Baseline (GMM) 2.37 0.245 0.294

NN (60_1500_1500_2048) 2.27 0.242 0.293

NN (360_1500_1500_2048) 2.20 0.231 0.278

NN 
(360_1500_1500_1500_1500_2048) 2.17 0.228 0.279



Sufficient statistics to i-vectors (s2i)

● Model for initializing e2e system is 
trained on the output from  f2s

● Input preprocessing
a. Calculate relevance MAP adapted 

supervector (r=16)
b. Reduce it by PCA from  2048 x 60 = 

122880 to 4000 dim.

● 2 hidden layers with 600 units, tanh 
activation functions followed by affine 
transform and “length-norm”

● Output: LDA reduced and 
length-normalized i-vectors

● Training objective: Cosine distance



S2i architecture 

Developments on SRE10, core-core condition 5

● PCA dimension: 4000 (higher was not better), NN (4000_600_600_600)  

● Mean square error objective

● Cosine distance objective

Target ivectors NN Output EER [%] mdcf0.01 mdcf0.005

Length norm Affine 2.86 0.290 0.346

WC norm. + Length norm Affine 2.76 0.276 0.321

WC norm. + Length norm Affine + Length norm. 2.59 0.270 0.313

EER [%] mdcf0.01 mdcf0.005

BASELINE 2.41 0.246 0.295

WC norm. + Length norm Linear -> Length norm 2.56 0.269 0.311

+ LDA Affine + Length norm. 2.55 0.257 0.310

+ L1 reg Affine + Length norm. 2.43 0.256 0.306



● The DPLDA baseline is trained iteratively using full batches (L-BFGS)

● For joint training with other blocks we use minibatches 

● Minibatch approach in experiments:

a. Group all utterances into pairs of the same speakers 

b. Shuffle the pairs

c. Select N pairs (without replacement) to form a minibatch 

d.

● Training objective: Binary cross-entropy for all trials in the batch

I-vectors to scores (DPLDA)

Batch 1 Batch 2



● Total weight of each speaker may change for the used method (and sets 
if their average number of utterances per speaker differs)

● In DPLDA experiments the alternative method did not work well

          Alternative method                                        Used method 
          All utterances of the same                              Generally 2 utterances per 
          speaker in one batch                                      speaker in each batch

          

          Many but dependent                                      Fewer but less dependent

Effect on target trials



Memory issues in end-to-end system

● f2s processes frames. Number of intermediate values needed in training:  

#Frames*(360+1500+1500+1500+1500+2048)

● When f2s is trained independently, one frame from a many different 

utterances can be used

● For e2e we need many full utterances per batch so the number of frames is 

large

● We discard intermediate values from forward prop. of f2s and recalculate 

them during backprop. (Similar to Theano’s scan_checkpoints)  

● With this trick we can use around ~30 utterances  per minibatch instead of ~5 

on a GPU with 4GB  

● The parameters (mainly the PCA matrix) of the network itself uses about 3GB 



Results

Average of minDCF0.01 and minDCF0.005                  =Joint training

System UBM i-extractor PLDA SRE16 PRISM
Short

PRISM 
Long

Baseline GMM T Gen. 0.988 0.699 0.411

Baseline DPLDA GMM T Discr. 0.975 0.616 0.360

f2s NN T Gen. 0.980 0.687 0.394

s2i GMM NN Gen. 0.988 0.788 0.430

f2s+s2i NN NN Gen 0.982 0.780 0.432

f2s+s2i+DPLDA NN NN Discr. 0.953 0.597 0.300

s2i+DPLDA - joint
N=5000

NN NN Discr.   0.936  0.586  0.287

All - joint, N=10 NN NN Discr. 0.936 0.587 0.289



Conclusions

● Neural networks can mimic estimation of responsibilities and i-vector 
extraction reasonably well

● Fine-tuning of the initialized network with binary cross-entropy criteria 
improves the performance

● Main improvement of joint training comes from refining of s2i module
○ DPLDA module does not change much
○ f2s module hard to train since we can use only small batches

● Future work:
○ Better joint training of the three blocks
○ Selection of suitable (difficult) training trials
○ Explore different training objectives, multiple enrollment sessions
○ Update PCA matrix and feature transform
○ Replace f2s with lighter network
○ Experiment with less constrained/regularized network



Thank you!

Questions?


