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Existing Multi-image Alignment Methods

Problem: Multi-image alignment: bring different images into one coordinate system ~ Common Framework: Many multi-image alignment methods (e.g., MAP, MLE) optimize the O~ I :
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m function, with different str les. ; g 10°} 10°] .
Challenge: . same" cost function, with different strategies : N m m :
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e Several applications with very different SNR conditions e Cyclic coordinate descent: optimize one S S ) ) Chiner 3 —
e Great amount of effort invested into developing alighment methods U Tyap = argurilax log p(z|u,T) + log p(u)] ~ coordinate at a time: (i) given shifts, estimate u; | 0% A I 5 ° — :
e We seek to organize the main multi-image alignment methods under a common framework ' o i > 1 Tw—1_(ii) estimate new shifts with respect to u. Repeat. B T — - o 0 T e o 1 T 10
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and provide practical answers to fundamental questions > 20 2 | o
: | e Variable Projections: directly maximize to _no image prior (MLE)
Fundamental Questions: Notation: ~ recover the unknown shifts [2] Experiments show three SNR regions i
e Fundamental limits in multi-image alignment performance? high, moderate and very low SNR
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e Best possible accuracy? R o B(r) = [B(r1)",...,B(rk)"]", with B(r;) Shannon Tuar = argmax z- BWB™ z 10" £
. . o ML SEEL G | shift operator that verifies: B(7T;)u(x) = u(x — T;). g 5 7¢ K
e Does having more images help? ] . TER .
: . : e B =FBF" 1sthe Fourier equivalent of the shift operator . 1 . o
e Does shift prior information help? o | 5 MAP: W = (S, (K + 1) + I0?)"'S, is the Wiener filter 10° ¢
: 5  u modeled as deterministic unknown (MLE), or as a station- MLE: W = I (no image prior) = ;
e |sthere dany room for Improvement: ary zero-mean Gaussian process with spectral density S,, , C e e ne . % N :
e How important is initialization? (hon-convex) = 107 ¢ VLE K=5
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Theoretical Performance Limits on Multi-alignment Accuracy
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107 | — — Align and average 5 real images using MLE (no image prior) or
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Cramer-Rao Bound (CRB) Extended Ziv-Zakai Bound (EZZB) SNR MAP (Gaussian image prior) when using different patch-sizes

(stochastic image model) (white noise image model + uniform shift prior)
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Concluding Remarks

10 =1 _ :
E;?go _ ~ Per-region behavior depending on the SNR:
10° High SNR
""" : e All evaluated methods perform very similarly and very close to performance bounds
10° __ e Simplest methods already achieve the best possible performance
e ' e Including image prior image or more images does not improve alignment accuracy
6aussian noise | . ' Moderate to low SNR | | o | | | | |
- - 2 Obse‘f\/ahom 1073 - - - — - ' ' — — e (lear performance gain when including image prior or using more images. Twofold gain: MSE is
wiTh variance o 20 10 0 10 20 30 20 10 0 10 20 | , ,
SNR (dB) SNR (dB) reduced; threshold at which performance degrades dramatically is pushed back several dBs
. | Different image/shift models lead to different performance bounds. e Performance gain obtained with image priOr 1S Iarger than that of inCreaSing number of images
Zi (X) = U(X — Ti) T ni(x)7 1 = O, c e ey K, (M) Behaviour depends on image SNR (total energy, noise level) and number of images [3] e Methods with image prior perform very close to CRB (little room for improvement)
: e Optimization/initialization: slight differences observed for MLE in low SNR, not a critical point
Experimental Setup
WU (underlying S : ~ Very low SNR
. Known notseless tmage) ~ Simulated Experiments: e |limit SNR value below alignment is not possible; neither more images nor image priors help (as
To consider: or e, Gaussian process e Sets of images generated following (M), different noise levels and number of shifted images oredicted by [2]). Only way out: increase SNR, e.g., increasing image size (patch size in case of
e Number of images K nknown 7 e Motlc?n consm.lered: uniformly dlstr.lbuted independent Shlft.S and drlft-drl\{en trajectories local alignment).
e SNR (image energy / noise level) e MAP |.mage prior: zero-mear.w Gaussian process spectral density decaying with frequency
e Image model (random, determ.) Bayizsiaw e e Experiments repeated 100 times for ez.ach SNR.IeveI; RMSE mean. and 95% CI reported. f
e Shift prior ér-f C*’zg‘gggm (€22B) e All evaluated methods are almost unbiased (bias orders of magnitude smaller than variance) Reterences
e SNR defined as ratio between energy of the derivative and the noise power ‘ | | N |
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