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Motivation

Non-negative matrix factorization (NMF) aims to learn parts-based
representation by seeking for two non-negative matrices whose
product can best approximate the original matrix;

However, the manifold structure is not considered by NMF and many
of the existing work use the graph Laplacian to ensure the
smoothness of the learned representation coefficients on the data
manifold. Further, beyond smoothness, it is suggested by recent
theoretical work that we should ensure second order smoothness for
the NMF mapping, which measures the linearity of the NMF mapping
along the data manifold.

Therefore, based on the equivalence between the gradient field of a
linear function and a parallel vector field, we propose to find the NMF
mapping which minimizes the approximation error, and
simultaneously requires its gradient field to be as parallel as possible.
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NMF

Given a data matrix X = [x1, · · · , xn] ∈ Rm×n, NMF aims at finding two
non-negative matrices U = [uik ] ∈ Rm×K and H = [hjk ] ∈ Rn×K by
minimizing

ONMF = ‖X − UHT‖2, s.t. U ≥ 0,H ≥ 0. (1)

The K columns of U are basis vectors, and each column of H is an
encoding of a sample vector in X and is an one-to-one mapping.

Property. The non-negative property enforced on both U and H
allows only addictive combinations among different bases, which
makes NMF learn parts-based representation.

Optimization. ONMF is convex when updating variable one by one.
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Parallel Fields and Linear Functions

In geometry and vector calculus, a vector field is a mapping from a
manifold M to tangent spaces. The parallel vector field has close
relationship to a linear function on the manifold, which can be described
below.

Definition

(Parallel Field). A vector field X on manifold M is a parallel field if
∇X ≡ 0, where ∇ is the covariant derivative on M.

Definition

(Linear Function). A continuous function f :M→ R is said to be linear if
(f ◦ γ)(t) = f (γ(0)) + ct for each geodesic γ.
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Parallel Fields and Linear Functions

In this work, a function f is linear means that it varies linearly along
the geodesics of the manifold.

The following proposition reveals the relationship between a parallel
vector field and a linear function on the data manifold.

Proposition

Let V be a parallel field on the manifold. If it is also a gradient field for
function f , V = ∇f , then f is a linear function on the manifold.

We will not strictly distinguish between the concepts of covariant
derivative and gradient field in this work.
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PFNMF Model Formulation

The basic rules are

learn vector fields on manifold from data samples to approximate the
gradient field of the NMF mapping function, and encourage the
vector fields to be as parallel as possible;

learn NMF embedding while enforcing the encodes to be as close to
the estimated parallel fields as possible.

Since the manifold M is unknown, the mapping function in NMF

fk(xj) = hjk , f
(k)
j , j = 1, . . . , n has no explicit form. First we need to

estimate the tangent space of each data point, which will be used for
discretizing the continuous objective function form when estimating
parallel vector fields and learning NMF embedding. Therefore,

Compute the local tangent spaces;

Estimate the parallel vector field;

Learn the NMF mapping;
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Compute the local tangent spaces TxiM

Let W be the corresponding affinity matrix of graph G and W is
simply defined by 0-1 weight.

Let xi ∼ xj denote xi and xj are neighbors. For each xi , we can
estimate its tangent space TxiM by performing PCA on its local
neighborhood. We choose the eigenvectors corresponding to the d
largest eigenvalues since TxiM is d-dimensional. Let Ti ∈ Rm×d be
the matrix whose columns constitute an orthogonal basis for TxiM.

Pi = TiT
T
i is the unique orthogonal projection from Rm onto the

tangent space TxiM. That is, for any vector a ∈ Rm, we have
Pia ∈ TxiM and (a− Pia) ⊥ Pia.
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Estimate the parallel vector field

Let V be a smooth vector field on M. By definition, the covariant
derivative of V should be zero. That is, ∇V ≡ 0. For each point xi

let Vxi denote the value of the vector field V at xi

∇V |xi denote the value of ∇V at xi

Then, Vxi should be a vector in the tangent space TxiM. and can be
represented by the local coordinates of the tangent space, Vxi = Tivi ,
where vi ∈ Rd .
The parallel field V can be obtained by solving

min
V

E (V) =
∑n

i ,j=1
wij‖PiTjvj − Tivi‖2. (2)

which has a compact form as E (V) , VTBV. By imposing constraint
‖V‖2 = 1, the parallel vector field V can be estimated by solving the
following eigenvalue decomposition problem

BV = λV. (3)
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Learn the NMF embedding

If the dimensionality of learned NMF embedding is K ; thus, we use
Ṽ ∈ Rdn×K to denote the stack of K eigenvectors.
Once the parallel vector fields Vi are obtained, the embedding functions
f (k) :M→ R can be constructed by requiring their gradient fields to be
as close as Vi as possible, which can be achieved via minimizing

R(f (k)) =
∑n

i ,j=1
wij((xj − xi )

2Tivi − f
(k)
j + f

(k)
i )2. (4)

Then we obtain the objective of PFNMF as

OPFNMF = ‖X − UHT‖2 + α
∑

k
R(f (k)) (5)

where
R(f (k)) = 2f (k)TLf (k) + VTGV− 2VTCf (k). (6)
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PFNMF Optimization

Using multiplicative updates, the updating rules are respectively

Update U via

uik ←
uik(XH)ik
(UHTH)ik

. (7)

Update H via

hjk ← hjk
(XTU + αCT Ṽ+ + 2αWH)jk

(HUTU + αCT Ṽ− + 2αDH)jk
(8)

where L = D −W , Ṽ = Ṽ+ − Ṽ−, Ṽ+ = (|Ṽ|+ Ṽ)/2, and
Ṽ− = (|Ṽ| − Ṽ)/2.
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Algorithm Workflow

Algorithm 1 PFNMF

Input: Data samples X = (x1, x2, . . . , xn) ∈ Rm×n and α;
Output: The basis matrix U and coefficient matrix H.
for i = 1 to n do

Compute tangent spaces TxiM for each data sample by performing
PCA on neighborhood of xi ;

end for
Construct matrix B according to (2);
Do eigen-decomposition on (3) to estimate Ṽ;
// Iteratively optimize PFNMF model
while not converged do

Update U according to (7) with H fixed;
Update H according to (8) with U fixed;

end while
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Experimental Settings

We investigate the effectiveness of PFNMF on image clustering. We
set the parameter K to be the number of clusters and use the
obtained coefficient matrix H to determine the cluster label of each
data point.

Evaluation metrics are

ACCuracy (ACC)
Normalized Mutual Information (NMI)

Date Sets are

Table 1: Properties of the used data sets.

dataset #size #dimensionality #class

COIL20 1440 1024 20

ORL 400 4096 40

PIE 2856 1024 68
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Clustering results on COIL20

K
Accuracy (mean±std-dev%)

Kmeans NMF GNMF PFNMF

6 78.07±12.16 75.53±11.87 86.66±12.67 92.82±8.20
8 72.96±10.23 72.06±9.64 90.43±7.75 95.29±6.48
10 68.87±6.17 68.89±8.88 81.41±7.58 87.44±6.51
12 68.20±4.02 67.87±5.45 79.13±5.96 86.17±5.32
14 67.11±5.65 66.67±4.60 82.49±4.61 84.67±4.09
16 65.23±4.42 65.56±4.69 79.09±4.10 80.90±3.72
18 62.74±3.85 63.15±3.65 78.97±3.49 80.41±4.29
20 60.49 58.33 80.69 85.14

Avg. 69.75 68.65 83.51 87.65

K
Normalized Mutual Information (mean±std-dev%)

Kmeans NMF GNMF PFNMF

6 74.83±12.79 71.99±11.91 87.91±8.84 92.54±7.75
8 74.23±7.65 72.02±7.57 91.29±5.72 95.36±5.23
10 72.68±5.95 71.72±7.49 86.80±5.07 90.41±4.68
12 73.22±3.25 72.36±3.95 86.83±3.43 90.85±3.41
14 74.19±3.93 72.92±3.75 89.29±2.80 91.33±2.51
16 73.88±2.71 72.61±3.38 88.36±2.10 89.73±2.58
18 73.25±2.54 72.28±2.41 88.36±1.57 89.50±1.61
20 73.86 71.51 89.12 90.50

Avg. 73.91 72.02 88.70 91.64
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Clustering results on ORL

K
Accuracy (mean±std-dev%)

Kmeans NMF GNMF PFNMF

8 66.68±8.74 67.06±7.18 70.56±7.28 72.63±10.14
12 62.58±6.58 63.50±6.81 68.42±7.26 69.67±6.51
16 59.94±5.91 59.53±4.67 64.63±6.11 67.69±5.18
20 57.30±4.92 54.75±4.99 62.47±4.05 65.45±5.65
25 56.18±4.04 53.98±4.29 61.38±3.25 65.10±4.15
30 55.63±3.33 52.23±3.29 59.33±2.91 61.83±3.34
40 53.50 49.75 59.75 62.25

Avg. 64.71 62.09 68.99 71.46

K
Normalized Mutual Information (mean±std-dev%)

Kmeans NMF GNMF PFNMF

8 70.97±7.31 69.86±6.91 72.94±7.25 75.37±7.78
12 71.94±5.16 71.79±5.28 75.50±4.63 76.99±5.13
16 70.45±4.68 70.01±3.80 73.48±4.62 76.04±3.93
20 70.59±3.86 68.55±3.17 74.76±3.01 76.99±3.54
25 71.13±2.88 69.50±2.82 74.62±2.16 77.50±2.79
30 71.33±2.05 69.98±2.65 74.20±1.99 76.01±2.11
40 71.42 68.92 75.70 78.23

Avg. 71.65 68.09 74.91 77.07
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Clustering results on PIE

K
Accuracy (mean±std-dev%)

Kmeans NMF GNMF PFNMF

10 31.15±4.00 56.62±5.16 85.01±9.28 91.39±7.38
20 27.20±1.99 55.32±4.46 80.69±6.20 83.72±5.64
30 26.35±1.29 55.87±2.18 81.60±3.08 84.19±3.51
40 25.34±1.31 55.96±3.37 77.51±3.84 79.81±3.18
50 24.62±1.08 55.27±2.10 76.59±3.90 78.83±4.41
60 24.17±1.10 55.64±2.42 74.69±2.89 76.34±3.29
68 24.54 56.79 70.52 73.01

Avg. 26.20 55.92 78.09 81.04

K
Normalized Mutual Information (mean±std-dev%)

Kmeans NMF GNMF PFNMF

10 37.75±6.40 66.22±2.88 89.53±5.28 91.16±4.23
20 44.24±2.30 72.77±2.88 88.85±2.86 90.73±3.10
30 48.19±2.05 76.47±1.04 89.85±1.25 91.12±1.81
40 50.08±1.68 78.20±1.34 88.86±1.53 90.87±1.57
50 51.33±1.40 78.75±0.85 88.67±1.46 90.54±1.35
60 52.67±1.21 80.36±0.99 88.36±0.92 90.18±1.17
68 53.77 80.18 87.21 89.96

Avg. 48.29 76.14 88.76 90.65
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Basis Vectors

(a) Original images. (b) Basis by NMF. (c) Basis by PFNMF.

Figure 1: Basis vectors learned from the ORL data set. Large values are
illustrated with white pixels.
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Conclusion

We have presented a novel method for matrix factorization algorithm
to enforce the second order smoothness of data representation called
PFNMF. Experiments shows that our proposed method performs
better than other comparison methods in image clustering.

Such regularizer is a general framework and can be incorporated into
other models.
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Thanks.

If you want to know more about the derivation, please send me an
email yongpeng@hdu.edu.cn
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