
• Overview
‐ Error bounding box correction task essentially can be modeled as a framework of Markov decision process (MDP) because the resulting

outcome is partly random and partly under the control of a decision maker.
‐ We can exploit this hypothesis to model an agent to make the sequence of decisions.
‐ We set a single bounding box region as environment (or observation), so that the agent can make actions to move the bounding box

according to the environment.
‐ Our proposed method follows a neighborhood search strategy, which starts from a random region near by previous target location and then

adjusts position and size to correct target.

• MDP Formulation
‐ Actions: There are 13 possible actions which can be categorized into movement actions (e.g. 4 actions), scale actions (e.g. 8 actions) and

termination action (e.g. 1 action).
‐ States: States in our work can be divided into two parts; feature vector and memory vector. The feature vector is the Pool5 layer feature

map of VGG-16 from current bounding box region. The memory vector consists of the last 10 actions which the agent has already
performed in search for an object.

‐ Reward: Reward strategy of the proposed method closely follows the Caicedo and Juan’s work [2]. To adjust the object tracking task, a
specific case is needed. Hence, we set the threshold with a constant and 𝜏 = 0.9, while other parameters stay the same as in [2].

• Network Structure

• Performance comparison of original state-of-the-art multi-object tracking methods
and methods with regression approach; while the best evaluation metric is in bold.
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• Motivation
‐ The state-of-art multi-object tracking accuracy is still limited to

poor performance due to presence of complex scenes and
frequent change of target appearance.

‐ Poor performance of object tracking can be attributed largely
by the object’s encapsulation with inaccurate bounding box in
the form of oversized, partial and false position as shown
below

• Conventional Method
‐ There is almost no existed regression based correction

method for multi-object tracking task;
‐ Recently, regression approaches have been widely used in

various object detection tasks [1, 2] for correcting the object
detection results or finishing an object detection task.

• In this paper, a precise bounding box regression approach to
correct imprecise bounding box is proposed for improving tracking
result of object tracking task.

• Our proposed method employed deep reinforcement learning
algorithm to learn about how to explore for the optimal regression
path between error bounding box and ground truth.

• Experimental results indicate that the proposed regression method
can correct error bounding box effectively and definitely increase
the tracking accuracy of state-of-the-art object trackers.

Conclusions
• Deep Q-learning

‐ Deep reinforcement learning (DRL) is a series of enhanced
algorithms which exploits deep learning theories to improve
the original reinforcement learning methods. One typical
algorithm is deep Q-learning (DQN) [3].

‐ In DQN algorithm, a CNNs model is used to approximate the
Q-table which indicates the future rewards that can be
obtained by following a searching policy through all possible
states. DQN learns about a state-action value function (Q-
value) and represents Q-value by CNNs, then decides a
sequence of actions following the output of CNNs model.

Background

• Training procedure
‐ Samples generation: we follow a motion smoothness

hypothesis which indicates the changes of object location and
size obey Laplace distribution with mean of 0 and 1
respectively.

‐ Training strategy: A 𝜖 − 𝑔𝑟𝑒𝑒𝑑𝑦 policy is used to enlarge path
searching range by randomly choosing actions. 𝜖 is initiated
with 1 then decreased to 0.1 by steps of 0.05 every 5 epochs.

‐ DQN parameters: Setting replay pool size as 1000 and
discount factor 𝛾 = 0.9.

‐ Network parameters: VGG 16 model is pre-trained by
ImageNet database. Q-network is initiated randomly from a
uniform distribution and trained with learning rate as 1e-6 and
Adam optimizer. Finally, each target-specific model is trained
with 100 epochs and batch size of 100.

• Testing procedure
‐ Each regression iteration is limited in 100 steps;
‐ Termination action appears within 100 steps is considered as a

successful iteration. Otherwise, the iteration is considered as a
failure.

• Experiment
‐ Dataset: 2D MOT 2015;
‐ Evaluation metrics:
➢ MOTA (Precision), IDF1 (ID change), MT (Precision), ML

(Precision) and HZ (Speed).
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• Example sequences of regression procedure.

Object tracking 
method

Regression 
method

MOTA (%) IDF1 (%) MT (%) ML (%) HZ

AMIR15 [5]

OURS 40.1 46.0 18.4 23.0 0.7

Girshick et al [4] 37.4 46.0 15.4 26.5 1.6

He et al [1] 38.6 46.0 17.9 25.7 1.5

None 37.6 46.0 15.8 26.8 1.9

HybridDAT [6]

OURS 42.3 47.7 13.6 39.7 3.1

Girshick et al [4] 36.0 47.7 11.5 42.6 4.0

He et al [1] 37.4 47.7 13.8 40.0 4.0

None 35.0 47.7 11.4 42.2 4.6

Start 8th state 26rd state 52th state

20th state 49th state Start 76rd state 
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