
ORTHOGONALLY REGULARIZED DEEP NETWORKS
FOR IMAGE SUPER-RESOLUTION

TIANTONG GUO, HOJJAT SEYED MOUSAVI, VISHAL MONGA | THE PENNSYLVANIA STATE UNIVERSITY

INTRODUCTION & MOTIVATION
Recent advances have seen a surge
of deep learning approaches for image
super-resolution:
• CNN1 with residual net structure2

is trained to learn the relationship
between low & high-resolution images.

• Deep learning SR methods3 work on
spatial domain data and aim to recon-
struct pixel values.

• ORDSR explores the advantages of
transform domain and learning suitable
transformation basis functions.

ORDSR: NETWORK STRUCTURE
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2D DCT & SR
An image x(n1, n2) of size H ⇥ W can be
decomposed into blocks of size N ⇥N .
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Zig-zag reordering the DCT basis functions
as filters with increasing complexity order:

LR and HR image share low-frequency
DCT coefficient. SR becomes the problem
of recovering high-frequency DCT coef-
ficients of the HR image from the corre-
sponding LR ones.

REGULARIZATION TERMS & COST FUNCTION
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Pairwise Orthogonality Constraint - keeping the orthogonality properties of trans-
form layer by forcing pairwise orthogonality

8i 6= j, kvec(wi)
T vec(wj)� ✏k22 = 0

Complexity Order Constraint - keeping the frequency order of the DCT cube
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wt are the CDCT filters and w

dct
t is the DCT counterparts.

Modified Back-Propagation - training the network with desired gradient terms:
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INFERENCE PROCEDURE

For an input LR image x, ORDSR generates its SR version ŷ as follows:

1 The input x is convolved with CDCT layer producing a DCT cube {fi}64i=1

2 The DCT cube of x is divided into flow and fhigh corresponding to low and high-
frequency spectra using a threshold T

3 A D-layer CNN takes fhigh as input and recovers the missing high-frequency infor-
mation using a residual network structure, generating ˆ

fhigh.

4 The ˆ

fhigh is appended to flow forming the SR-DCT cube {ˆfi}64i=1.

5 The SR-DCT cube {ˆfi}64i=1 is transpose convolved with the filters in the
CDCT/transform layer (to perform the IDCT/inverse transform) generating ŷ.

EXPERIMENTAL RESULTS

Filters of CDCT layers:

✏ = 0.0001

✏ = 0.001

✏ = 0.01

Bicubic
[Baseline]

ScSR
[TIP 10]

FSRCNN
[ECCV 16]

Set5
x2
x3
x4

33.64 0.9292
30.39 0.8678
28.42 0.8101

35.78 0.9485
31.34 0.8869
29.07 0.8263

36.94 0.9558
33.06 0.9140
30.55 0.8657

Set14
x2
x3
x4

30.22 0.8683
27.53 0.7737
25.99 0.7023

31.64 0.8940
28.19 0.7977
26.40 0.7218

32.54 0.9088
29.37 0.8242
27.50 0.7535

SRCNN
[PAMI 16]

VDSR
[CVPR 16]

ORDSR
[proposed]

Set5
x2
x3
x4

36.66 0.9542
32.75 0.9090
30.48 0.8628

37.52 0.9586
33.66 0.9212
31.35 0.8820

37.48 0.9574
33.74 0.9221
31.38 0.8847

Set14
x2
x3
x4

32.42 0.9063
29.28 0.8209
27.40 0.7503

33.02 0.9102
29.77 0.8308
28.01 0.7664

33.04 0.9109
29.81 0.8300
28.06 0.7664

Best results shown in red, second best shown in blue.

Original

Original

Bicubic (22.9594, 0.9036, 3.85)

Bicubic (22.9594, 0.9036, 3.85)

ScSR (30.4204, 0.9309, 4.04)

ScSR (30.4204, 0.9309, 4.04)

A+ (31.5995, 0.9435, 5.08)

A+ (31.5995, 0.9435, 5.08)

SelfEx (32.0287, 0.9471, 4.78)

SelfEx (32.0287, 0.9471, 4.78)

SCN (23.5215, 0.9327, 4.39)

SCN (23.5215, 0.9327, 4.39)

SRCNN (32.3156, 0.9445, 4.66)

SRCNN (32.3156, 0.9445, 4.66)

FSRCNN (32.5227, 0.9476, 5.08)

FSRCNN (32.5227, 0.9476, 5.08)

VDSR (33.8734, 0.9553, 5.09)

VDSR (33.8734, 0.9553, 5.09)

ORDSR (34.7441,0.9597,5.13)

ORDSR (34.7441,0.9597,5.13)

Experiment results with different training scenarios:
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