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Inductive Matrix Completion. What? Why?

Low-rank Matrix Completion: 'ggﬁ

N
[+

given some entries, find a matching alv] [v] ] |
low-rank matrix @l v v
2V v |V
e Recommender systems
_ o alv| [viviv|v|v
® Image Inpainting ¢ v

Inductive Matrix Completion[Jain and Dhillon '13]
e In many applications, side information is available

e Inductive matrix completion (IMC) incorporates side information
in form of features of the row and column entities
e Benefits:

e Reduce sample complexity
e Allow for inductive prediction on new users/items

This talk: study the optimization landscape of the IMC Model
'
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Low-Rank Matrix Completion

e Low-rank matrix completion problem

MG%E?XWQ HM;‘Z — MgHi s.t.  rank(M) <.

indices of m given entries

e This is too hard! Two tractable approaches:

Convex Nonconvex
( mplvs-maleapal, ) (g IMa - 0Vl + AUV )

e Sample complexity O(n polylog(n) poly(r)), where n is the
dimension of M.
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Side Information and IMC

e Examples of side information
o Graph information (pairwise relationships)
o Estimates of column/row spaces (e.g. in time varying applications)
— features of users and items

e IMC models side information as knowledge of feature spaces
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IMC as A Matrix Sensing Problem
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IMC as A Matrix Sensing Problem
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e Rewrite the IMC objective function
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IMC as A Matrix Sensing Problem
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e Rewrite the IMC objective function

Mg, = [XWY o[} = D7 M5 — (xiy? W)|* = [AW?) — AW)|;
(i,4)€Q

dy
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e Matrix sensing problem (vl
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Convex vs Nonconvex Formulation

Convex Formulation:

min [JA(W) = A(W)|3 + A || W],
W eR41 X a2

Nonconvex Formulation:

min AT V") — AUV + R(U, V)
UERdl ><T‘7V6Rd2 Xr

{ Convex J [ Nonconvex ]

e Sample complexity (exact):
O(rdlogdlogn)

X Not scalable (SVD, SDP, ...)

v/ Theoretically understood

w7 (convex program)
288

e Sample complexity (inexact):
O(r3dlog d max{r,logn} log(1))
v/ Computationally efficient
— Not as well understood
Our Goal: understand better
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Why Care about Nonconvex Optimization Theory?
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Why Care about Nonconvex Optimization Theory?

e Success of local search algorithm (e.g. AM, SGD, ...) in matrix
factorization, deep learning, etc.
e Better understanding of behavior around stationary points

e SGD (and other stochastic variants) escape strict saddle points
[Ge et al. '15, Jin et al. '17]
e SGD escapes sharp local minima [Kleinberg et al., 2018]

e Better understanding of optimization landscape

GVe study the optimization landscape of the IMC problem)
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Strict Saddle Point* Non-Strict Saddle*

“Credit: Wikimedia Commons

[BE |@Rutgers University Ghassemi et al.




ICASSP 2018 > Nonconvex IMC

Geometric Properties of Nonconvex IMC Objective

“Nice” properties of the IMC objective function make recovery using
local algorithms possible:

e Escapable saddles: there is a descent direction at saddle points

Strict Saddle Point* Non-Strict Saddle*

“Credit: Wikimedia Commons

e No poor local minimum: all its local minima are globally optimum

[BE |@Rutgers University Ghassemi et al.
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Proof Strategy

We employ the framework by Ge et al. [2017] for nonconvex matrix
recovery

e First we describe the strategy for symmetric matrices

e Show that around stationary points, the “difference” A between
the current point and its nearest true solution (invariant to
rotation) is a descent direction

(On!y direction: toward the minimurB —> ( Local minima = true solutions )

( There is a descent direction ) _ ( Saddle points have to be strict )

o Later: the strategy for general case M* = U*[V*]T

Rutgers University Ghassemi et al.
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A Descent Direction Around Stationary Points

e Vf(U) =~ 0 around stationary points, so 67 V2f(U)d becomes
dominant in Taylor series expansion

e A =U — U" is a descent direction around a stationary point iff
for d = vec(A), we have dTV2f(U)d < 0

e We use RIP property of operator A in the objective function

£(0) = AU [U"]" - UUT)

At most rank-2r

A is (2r, 65, )-RIP

[ 52 ) J\ §TV2f(B)s < 0

around stationary points, unless
@ = VeC(Aﬂ — 1 A=B-B*=0 (= recovery)

4
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Operator A satisfies RIP

' )-RIP
A is (2r,62,)-R 57V F(B) < 0

around stationary points, unless
0 =vec(A)|—"VA=B-_B*=0 (= recovery)
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Operator A satisfies RIP

A is (2r, 02, )-RIP
2 5TV2f(B)S < 0
around stationary points, unless
0 =vec(A)|—"A=B-_B*=0 (= recovery)

Theorem (Operator A is (27, d2,)-RIP)

If m = O (p2dr max{r?,log® n} log(36v/2/8)/52), then there exists
h > 0 such that with probability at least 1 — 2e~"™ the linear
operator A is (2r,26)-RIP.
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Operator A satisfies RIP

A is (2r, d2,)-RIP
2 5TV2f(B)S < 0

around stationary points, unless

0 =vec(A)|—"A=B-_B*=0 (= recovery)

Theorem (Operator A is (27, d2,)-RIP)

If m = O (p2dr max{r?,log® n} log(36v/2/8)/52), then there exists
h > 0 such that with probability at least 1 — 2e~"™ the linear
operator A is (2r,20)-RIP.

Proof steps:
@ given a rank-2r matrix, HA( )H2 ||W||F w.h.p.
® for all rank-2r matrices, HA(W)H2 ~ HWHF w.h.p.
5
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Operator A satisfies RIP: Step 1

Lemma

If the number of measurements m = O (4p*7* log(2/p)) for a
constant p > 0, then for a given matrix W of rank 2r, with probability
at least 1 — p, for some positive constants C' and c, we have

(1= 020) [W[7. < AWl < (14 020) W,

N A
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Operator A satisfies RIP: Step 1

Lemma

If the number of measurements m = O (4p*7* log(2/p)) for a
constant p > 0, then for a given matrix W of rank 2r, with probability
at least 1 — p, for some positive constants C' and c, we have

(1= 63,) W[5 < [JAW)[J; < (1 +820) [ W]
Proof ldea:

e Employ Bernstein Inequality to show concentration of || A(W) H2

around its mean HWH?

N A
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Operator A satisfies RIP: Step 2

We want to show concentration of ||A(W) ||§ around HWH?, for all
W e R4 rank(W) < 2r.
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e Define S§. = {W € R¥*¢: rank(W) < 2r,||[W||, =1} and its
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Operator A satisfies RIP: Step 2

We want to show concentration of ||A(W) ||§ around HWH?, for all
W e R4 rank(W) < 2r.

e Define S§. = {W € R¥*¢: rank(W) < 2r,||[W||, =1} and its
e-net Sgr
e Step 1: for a given W € Sg,

P(|[AW)[3~1| > 82r) <o

e Union bound:

IP’( max
Wesy,

— 2 —
[ACW)II; — 1] > 62r) < I8l
e Some algebra and setting W = ﬁ conclude the proof.
F
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Proof Strategy for Asymmetric Matrices

e Symmetric matrices:

: 23| l A is a descent direction f(B) is strict saddle
[A 1S (27.) 521‘)_R'IPJ around stationary points of f (B)J [ — has no poor local minima
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Proof Strategy for Asymmetric Matrices

e Symmetric matrices:

= l A is a descent direction f(B) is strict saddle
[A 1S (27", 527‘ )_R‘IPJ around stationary points of f (B)) [ — has no poor local minima J

e What about general asymmetric case?

[ F(U, V)]_)&s T ]_> [apply Solution for J

ymmetric problem symmetric problem

Rutgers University Ghassemi et al.
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Reformulation into a Symmetric Problem

e The asymmetric objective function

FU, V) = AU VT — UV + R(U, V)

A
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BT
v
M= U — N =
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Reformulation into a Symmetric Problem

e The asymmetric objective function
FU, V) = AU VT — UV + R(U, V)

e Construct the symmetric matrix N

BT
v
M= U — N =
B

uu'’ uv'
— T ; _
e Instead of M = UV", we work with N = [VUT VVT]

Rutgers University Ghassemi et al.
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Reformulation into a Symmetric Problem

e One can define linear operator 7 such that

|I7(B*B)" ~ BB’ = [AU*[V*]T - UVT)| + R(U, V)
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Reformulation into a Symmetric Problem

e One can define linear operator 7 such that
|7(B*B*” —BBT)|? = ||AU*[V*]" - UVT)|]® + R(U, V)
e Reformulated Symmetric problem

min || 7(B*[(B*]" - BB")|
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Reformulation into a Symmetric Problem

e One can define linear operator T such that
|7(B*B*” —BBT)|? = ||AU*[V*]" - UVT)|]® + R(U, V)
o Reformulated Symmetric problem
min || 7(B*[(B*]" - BB")|

e Now we can use the proof strategy of the symmetric problem

0 6TV f(B)S < 0
around stationary points, unless
d = vec(A) — | A =B - B* =0 (= recovery)

N
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Operator T Satisfies RIP

e If we use the common regularizer R(U, V) HUUT — VVTH§7

-_
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Operator T Satisfies RIP

e If we use the common regularizer R(U, V) HUUT VTHi,

-_

e Showing A is 2r-RIP is similar to the symmetric case
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Operator T Satisfies RIP

e If we use the common regularizer R(U, V) HUUT VVTH§7

-_

e Showing A is 2r-RIP is similar to the symmetric case

o Therfore, in general case it is also sufficient to show A satisfies
RIP

Rutgers University Ghassemi et al.
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Conclusion

We studied the optimization landscape of the IMC problem. Given
O(max{r?, log n}rd) observations, for the factored IMC objective
function,

e All saddle point are escapable
e There is no poor local minimum

e Global optimization results in exact recovery
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Conclusion

We studied the optimization landscape of the IMC problem. Given
O(max{r?, log n}rd) observations, for the factored IMC objective
function,

e All saddle point are escapable
e There is no poor local minimum
e Global optimization results in exact recovery

Implication: local search algorithms can escape saddle points.
— SGD will efficiently solve the IMC problem

Next steps:
e Experiments to understand non-asymptotic behavior.

e Extension to other side-information models.

/4
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