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INTRODUCTION



INTRODUCTION: CYBER-PHYSICAL SYSTEMS

• Cyber-physical systems
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INTRODUCTION: CYBER-PHYSICAL SYSTEMS

• Cyber-physical systems: structure
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INTRODUCTION: CYBER-PHYSICAL SYSTEMS

• Cyber-physical systems: security issues
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INTRODUCTION: CYBER-PHYSICAL SYSTEMS

• Security vulnerabilities in cyber communication
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INTRODUCTION: FALSE DATA INJECTION

• False data injection
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INTRODUCTION: FALSE DATA INJECTION

False data injection

• wireless sensor networks

• smart grids

• computer systems
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INTRODUCTION: LQG CONTROL SYSTEMS

• Linear-quadratic-Gaussian (LQG) control systems
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specific detection schemes

• C. Bai et. al. 2014, “On kalman filtering in the
presence of a compromised sensor: Fundamental
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Infinite horizon stationary LQG systems with the
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supporting Kalman filter
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PROBLEM FORMULATION



LQG SYSTEM MODEL
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Figure 1: Single-input single-output finite horizon LQG system.

xk+1 = Akxk +Bkuk + wk, wk ∼ N (0, σ2
k)

Goal of the controller: minimize the quadratic cost

J = E

{
QNx

2
N +

N−1∑

k=0

(Qkx
2
k +Rku

2
k)

}
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THE POLICY OF THE CONTROLLER

Optimal input u∗k: linear function of state xk

u∗k = Lkxk

Lk, Fk, Gk are given recursively by

Fk = Qk + Fk+1A
2
k −

F 2
k+1A

2
kB

2
k

Rk + Fk+1B2
k

Gk = Rk + Fk+1B
2
k

Lk = −
Fk+1AkBk

Rk + Fk+1B2
k

FN = QN

GN = 0
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FALSE INPUT INJECTION
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Figure 2: The corrupted LQG control system.

x̃k+1 = Akx̃k +Bkũk + wk, k = 0, 1, · · · , N − 1
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THE ATTACKER’S GOAL

The attacker’s goal: maximize

J̃(π) = E

{
QN x̃

2
N +

N−1∑

k=0

(Qkx̃
2
k +Rkũ

2
k)

}

• Infinite power?

• Need constraint on stealthiness (stealth)
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KULLBACK-LEIBLER DIVERGENCE

Definition: Kullback-Leibler divergence

Let xk1 and yk1 be to random sequences with probabil-
ity density functions (p.d.f.) fxk1 and fyk1 , respectively. If
fyk1 (ξ

k
1 ) = 0 implies fxk1 (ξ

k
1 ) = 0 for all ξk1 ∈ Rk,

D(xk1||yk1) :=
∫

{ξk1 |fxk1
(ξk1 )>0}

log
fxk1 (ξ

k
1 )

fyk1 (ξ
k
1 )
fxk1 (ξ

k
1 )dξ

k
1

• Measure of statistical deviation

• Assume: controller knows the attack policy
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THE PROBLEM

Attacker’s reward:

S(π) = J̃(π)− J

Attacker’s stealthiness:

D(π) = D(x̃N1 ||xN1 )

The problem

Given δ > 0, find the optimal policy π∗ that

minimize D(π), subject to S(π) ≥ δ
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MAIN RESULTS



MAIN RESULTS

The optimal attack is

ũk = uk + ṽk

• The attacker adds noises into inputs at each step.

• Zero-mean, Gaussian, and independent of system
dynamics.
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MAIN RESULTS

Theorem (Optimal Attack)

The optimal attack subject to S(π) ≥ δ is given by

ṽk := ũk − uk ∼ N (0,
δk
Gk

)

independent of the system dynamics at every step. The δk
is given by

δk =
1

ck − θ
− 1

ck

where ck =
B2

k

σ2
kGk

, and 0 < θ < min
0≤k≤N−1

ck is a constant such

that
N−1∑

k=0

1

ck − θ
−

N−1∑

k=0

1

ck
= δ
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SPECIAL CASE

Stationary system: if ck =
B2

k

σ2
kGk

= c for every k, the optimal
attack will be

ṽk ∼ N (0,
δ

NGk

)
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ILLUSTRATION
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Var(ṽk), δ = 15

Figure 3: Variance of optimal attack ṽk in a simple LQG
system. N = 5, Qk = 1, Rk = 0, Ak = 1, Bk = 1, and σ2k = k for
every k.
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OPTIMAL TRADEOFF

Reward constraints δ
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Figure 4: Kullback-Leibler divergence vs reward constraint for
constant parameter LQG systems with different noise levels.
Qk = 1, Rk = 0, Ak = 1, and Bk = 1
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PROOF OUTLINE



PROOF OUTLINE: SINGLE-STEP PROBLEM

Single-step problem:

x1 = A0x0 +B0u0 + w0

x̃1 = A0x0 +B0u0 +B0ṽ0 + w0

KL Divergence and Reward:

D(x̃1||x1) = D(B0ṽ0 + w0||w0)

S(π) = G0E{ṽ20}

Goal:

minimize D(B0ṽ0 + w0||w0), subject to E{ṽ20} ≥ δ/G0
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PROOF OUTLINE: SINGLE-STEP PROBLEM

D(B0ṽ0 + w0||w0) =
1

2
log(2πeσ2

0) +
B2

0E{ṽ20}
2σ2

0

− h(B0ṽ0 + w0)

• maximum entropy theorem

• ṽ0 ∼ N (0, δ
G0
) is optimal
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PROOF OUTLINE: MULTI-STEP PROBLEM

The reward of a policy π can be expressed as sum of
single step rewards,

S(π) =
N−1∑

k=0

Sk(π)

where the single step reward Sk is given by

Sk(π) = GkE{ṽ2k}, k = 0, 1, · · · , N − 1
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PROOF OUTLINE: MULTI-STEP PROBLEM

Similarly, the KLD of a policy π can be expressed as sum
of single step KLDs,

D(π) =
N−1∑

k=0

Dk(π)

where Dk(π) is the single step KLD

D0(π) = D(x̃1||x1)

Dk(π) =

∫
fx̃k1 (x

k
1)D(x̃k+1||xk+1|xk1)dxk1,

k = 1, 2, · · · , N − 1
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PROOF OUTLINE: MULTI-STEP PROBLEM

Divide total reward constraint into stepwise:

δ =
N−1∑

k=0

δk, δk ≥ 0

• For each k, solve a single-step problem

Stepwise optimization
Given δk > 0, find the optimal policy π∗ that

minimize Dk(π), subject to Sk(π) ≥ δk

• Memoryless
• ṽk ∼ N (0, δk

Gk
) is optimal with single-step constraint

Sk(π) ≥ δk. 29



PROOF OUTLINE: MULTI-STEP PROBLEM

• The optimal attack should be stepwise optimal

• It suffices to solve

Optimal allocation
Given δ > 0, find the optimal allocation {δk}N−1k=0 that

minimize
N−1∑

k=0

D∗k(π), subject to δk ≥ 0,
N−1∑

k=0

δk = δ
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PROOF OUTLINE: MULTI-STEP PROBLEM

Theorem (Optimal Attack)

The optimal attack subject to S(π) ≥ δ is given by

ṽk := ũk − uk ∼ N (0,
δk
Gk

)

independent of the system dynamics at every step. The δk
is given by

δk =
1

ck − θ
− 1

ck

where ck =
B2

k

σ2
kGk

, and 0 < θ < min
0≤k≤N−1

ck is a constant such

that
N−1∑

k=0

1

ck − θ
−

N−1∑

k=0

1

ck
= δ
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INTRUSION DETECTION
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Figure 5: Legitimate and Falsified dynamics in a scalar LQG
system: N = 50, Ak = Bk = Qk = 1, Rk = 0 and
σ2k = k + 25 ∀k
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FUTURE WORKS

• Vector LQG systems

• Imperfect observations

• Attack under specific detection schemes
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QUESTIONS?
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