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INTRODUCTION




INTRODUCTION: CYBER-PHYSICAL SYSTEMS

e Cyber-physical systems
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INTRODUCTION: CYBER-PHYSICAL SYSTEMS

e Cyber-physical systems: structure
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INTRODUCTION: CYBER-PHYSICAL SYSTEMS

e Cyber-physical systems: security issues
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INTRODUCTION: CYBER-PHYSICAL SYSTEMS

e Security vulnerabilities in cyber communication
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INTRODUCTION: FALSE DATA INJECTION

e False data injection
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INTRODUCTION: FALSE DATA INJECTION

False data injection

e wireless sensor networks
e smart grids
e computer systems



INTRODUCTION: LQG CONTROL SYSTEMS

e Linear-quadratic-Gaussian (LQG) control systems




RELATED WORKS

e H. Fawzi et. al. 2011, “Secure state-estimation for
dynamical systems under active adversaries” :
LQG systems data injection attacks, resistance to
specific detection schemes

e C. Bai et. al. 2014, “On kalman filtering in the
presence of a compromised sensor: Fundamental
performance bounds”:

Infinite horizon stationary LQG systems with the
objective of increasing the estimation error of the
supporting Kalman filter
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PROBLEM FORMULATION




LQG SYSTEM MODEL

noise VIO \11 VIz WlN—1
system X0 > X1 » X9 —» - —P XN

state T T T T
control L L L

. Uo up Uz UnN-1

nput

Figure 1: Single-input single-output finite horizon LQG system.

Xk+1 = Aka -+ Bkuk + Wk, Wi ~~ N(O, O'z)

Goal of the controller: minimize the quadratic cost

N-1
J=E {QNX?V + ) (Quxk + Rkui)}
k=0
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THE POLICY OF THE CONTROLLER

Optimal input uj: linear function of state x;,
11;; = Lka

Ly, Fy., G}, are given recursively by
F2  A2B2
Fp=Qr + Fk+1Ai - m
Gy = Ry, + Fyy1 B}
P AeBy
Ry + Fy1B2
Fy =Qn
Gy=0

Ly =
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FALSE INPUT INJECTION
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Figure 2: The corrupted LQG control system.

X1 = ApXp, + Brly + wy, k=0,1,--- ,N—1
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THE ATTACKER’S GOAL

The attacker’s goal: maximize
" N-1
J(m) =E {QNSZ?V + Z(Qkii + Rkﬁ@}
k=0

e Infinite power?
e Need constraint on stealthiness (stealth)
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KULLBACK-LEIBLER DIVERGENCE

Definition: Kullback-Leibler divergence

Let x} and y} be to random sequences with probabil-
ity density functions (p.d.f.) f. and f,, respectively. If
fyr (&) = 0 implies f.x(&7) = 0 for all & € RF,

fur(€h)
D(x*||v*) = log 2" £ L (£5)deR
(<) /{ s TE (e5)ae!

1

e Measure of statistical deviation
e Assume: controller knows the attack policy
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THE PROBLEM

Attacker’s reward:

Attacker’s stealthiness:

D(r) = D(}'|Ix1)

The problem
Given 0 > 0, find the optimal policy 7* that

minimize D(x), subjectto S(m) > §
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MAIN RESULTS




MAIN RESULTS

The optimal attack is

Uy, = Ug + Vi

e The attacker adds noises into inputs at each step.

e Zero-mean, Gaussian, and independent of system
dynamics.
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MAIN RESULTS

Theorem (Optimal Attack)
The optimal attack subject to S(m) > § is given by

Ok

/\7/6 Z:ﬁk—ukNN(O,G—k)

independent of the system dynamics at every step. The 6

is given by
1 1

5k:Ck—0 Cr

2 G ,and0 < 0 < min ¢ IS aconstant such
0<k<N-1

1 |
c 9_20_25

k=0 k=0 20

where ¢;, =
that

Ea



SPECIAL CASE

Stationary system: if ¢, = Uf;ék = c for every k, the optimal
k
attack will be

J
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ILLUSTRATION
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Figure 3: Variance of optimal attack v, in a simple LQG
system. N =5, Qr =1, R, =0, A, = 1, By = 1, and o7 = k for
every k.
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OPTIMAL TRADEOFF
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Figure 4: Kullback-Leibler divergence vs reward constraint for
constant parameter LQG systems with different noise levels.

Qr=1,R,=0,A,=1,and B, =1
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PROOF OUTLINE




PROOF OUTLINE: SINGLE-STEP PROBLEM

Single-step problem:

X1 = A()X() + BQUO + Wy

il = A()X() + Bouo + Bof\\/'/() + Wy
KL Divergence and Reward:

D(%||x1) = D(BoVo + wol|wo)
S(”) = GOE{{%

Goal:

minimize D(Byv, + wo||wo), subject to E{¥3} > §/Gy
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PROOF OUTLINE: SINGLE-STEP PROBLEM

B’QI[-E{~ }

~ 1
D(BUVO + W0| |W0) 25 log(27rea(2)) P 20
0

— h(BO’\}/O -+ Wg)

e maximum entropy theorem
* Vo ~N(0,%) is optimal
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PROOF OUTLINE: MULTI-STEP PROBLEM

The reward of a policy = can be expressed as sum of
single step rewards,

where the single step reward S, is given by

Sp(m) = GRE{V}}, k=0,1,--- ,N—1
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PROOF OUTLINE: MULTI-STEP PROBLEM

Similarly, the KLD of a policy = can be expressed as sum
of single step KLDs,

Do(m) = D(xlx1)

Dur) = [ fyahDGailnlebst,
k=1,2,---,N—1
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PROOF OUTLINE: MULTI-STEP PROBLEM

Divide total reward constraint into stepwise:
N-1
§=> 0k =0
k=0

e For each k, solve a single-step problem

Stepwise optimization
Given ¢, > 0, find the optimal policy 7* that

minimize Dy(m), subject to Si(7) > 0y

e Memoryless
o v, ~ N(0, é—’;) is optimal with single-step constraint

Sk(’/T) Z (Sk 29



PROOF OUTLINE: MULTI-STEP PROBLEM

e The optimal attack should be stepwise optimal
e |t suffices to solve

Optimal allocation
Given ¢ > 0, find the optimal allocation {4, }, ' that

N-1 N-—1
minimize » ~ Dj(r), subjectto 5 >0, 6 =6

k=0 k=0
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PROOF OUTLINE: MULTI-STEP PROBLEM

Theorem (Optimal Attack)
The optimal attack subject to S(m) > § is given by

Ok

/\7/6 Z:ﬁk—ukNN(O,G—k)

independent of the system dynamics at every step. The 6

is given by
1 1

5k:Ck—0 Cr

2 G ,and0 < 0 < min ¢ IS aconstant such
0<k<N-1

1 |
c 9_20_25

k=0 k=0 31

where ¢;, =
that
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INTRUSION DETECTION

Variance of Observation Var(xj)
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Figure 5: Legitimate and Falsified dynamics in a scalar LQG
system: N =50, A, = B, =Qr =1, Ry =0and
or=k+25 Vk
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FUTURE WORKS

e Vector LQG systems
e Imperfect observations
e Attack under specific detection schemes
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