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Overview
Applications:

Large-scale retrieval systems
Learned compression of feature vectors
Compressed representation useful for fast
similarity search

Contributions:

Rate-distortion (R-D) study of ternary and
binary encoding
Designing R-D efficient multi-layer
Sparse Ternary Codes (STC)

Background
Ability to search for similarity within a database is crucial for modern retrieval systems.
A wide-spread solution is binary hashing.
We proposed ternary hashing [WIFS’16] as an alternative to binary hashing.
We showed that ternary encoding has higher coding gain than binary encoding [ISIT’17].
Here we extend ternary encoding for the task of compression, so that we can have list-refinement.
Our design challenge: To have good R-D performance within STC limitations.

Problem formulation: ANN search
Similarity search:

(Exact) Nearest Neighbor (NN) search:
L(q) = {1 6 i 6 N|dE(f(i),q) 6 εn}
Approximate Nearest Neighbor (ANN) search:
L̂(q) = {1 6 i 6 N|dH(Q[f(i)],Q[q]) 6 ε}
Our solution: List-refinement with reconstruction
L̂′(q) = {i ∈ L̂(q)|dE(Q−1[Q[f(i)]],q) 6 ε}

Compressiom:

Encoding: x = Q[f]
Reconstruction: f̂ = Q−1[x]

Rate: R =
1
nE[# bits used to represent x]

Distortion: D = E[dE(F, F̂)]
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Single-layer Sparse Ternary Codes (STC)
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φλ(t) = sign(t).1{|t|>λ} Encoding:

x = φλ(Af)� β

(projection + ternarization +
re-weighting)

Reconstruction:

f̂ = Bx = Bφλ(Af)� β

(projection)

Optimizing single-layer STC
Back-projection B:

Decompose B = (ATA)−1ATB′, optimize B′:

B′ = argmin
B′
||F− (ATA)−1ATB′X||2F

= argmin
B′

Tr
[
− 2AATAFXTB′T + B′XXTB′TAAT

]
.

⇒ B′ = AFXT(XXT)−1.

Projection A:

To have un-correlated X:

CF ,
1
n
E[FFT ] = UFΣFUT

F

Simply as in PCA: A = UT
F

X̃ , AF ∼ N (0,ΣF)

With this choice of A: ⇒ B′ = In, B = AT

Calculation of distortion:

D = E
[
dE(F, F̂)

]
=

1
n
E
[
||F− ATX||22

]
=

1
n
E
[
||AF− X)||22

]
=

1
n
E
[
||X̃− φλ(X̃)� β||22

]
.

Distortion per each dimension (D =
∑n

i=1 Di):

Di = E
[
(X̃i − βiφλ(X̃i))

2] =

∫ −λ

−∞
(x̃i + βi)

2p(x̃i)dx̃i +

∫ +λ

−λ
x̃2

i p(x̃i)dx̃i +

∫ +∞

+λ
(x̃i − βi)

2p(x̃i)dx̃i

=⇒ Di = σ2
i + 2β2
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Optimal Re-weighting vector: β∗i = argminβi
Di =

σi exp
(
−λ2

2σ2
i

)

√
2πQ

(
λ
σi

) .

Rate: R = 1
nHt(X) = 1

n
∑n

i=1 Ht(Xi) = −1
n
∑n

i=1

(
2αi log2(αi) + (1− 2αi) log2(1− 2αi)

)

Sparsity per each dimension: αi , P[Xi = +βi] = P[Xi = −βi]

R-D performance of single-layer STC on AR(1) Gaussian sources
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Poor R-D performance for single-layer: rate mismatch
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(a) low-rate
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(b) mid-rate

100 200 300 400 500

0

2

4

6

8

·10−3

dimension

R
i
(b
it
s)

optimal (i.i.d.)

Single-layer (i.i.d.)

optimal (mid-corr.)

Single-layer (mid-corr.)

optimal (high-corr.)

Single-layer (high-corr.)

(c) high-rate

Optimal rate allocation is calculated using the “reverse water-filling” paradigm from information theory.
At higher rates, rate allocation deviates largely from optimal assignment.
Binary encoding is a special case of ternary encoding with zero sparsity and hence rate is very high.

From single-layer to multi-layer architecture

f [0]

x[1] = φ[1]
(
A[1]f [0]

)
� β[1]

f̂ [0] = A[1]T x[1]

+

f [1] = f [0] − ˆf [0]

f [1]

layer 1

· · ·

f [l−1]

x[l] = φ[l]
(
A[l]f [l−1]

)
� β[l]

f̂ [l−1] = A[l]T x[l]

+

f [l] = f [l−1] − ˆf [l−1]

f [l]

layer l

· · ·

f [L−1]

x[L] = φ[L]
(
A[L]f [L−1]

)
� β[L]

f̂ [L−1] = A[L]T x[L]

layer L

f̂ = f̂ [0] + · · ·+ f̂ [l] + · · ·+ f̂ [L]

R-D performance for multi-layer STC
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Search and R-D performance of multi-layer STC on public databases
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(a) MNIST
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(b) MNIST
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(c) Gist-1M

Conclusions
Single-layer encoding is insufficient to provide good R-D performance at high rates.
Residual-based multi-layer encoding can provide reasonable R-D performance.
Since binary-encoding has rate mismatch, it cannot benefit from multi-layer encoding.
Ternary encoding with high sparsity has low rate mismatch and can benefit from multi-layer encoding.
Future work: Joint learning of all layers.
Python implementation m: https://github.com/sssohrab/DSW2018
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