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Summary

• Global optimal resource allocation for a 3-user Gaussian MWRC with
SND, AF relaying, and rate spli�ing.

• Non-convex optimization problem but only few non-convex variables
• SoA (e.g. canonical monotonic optimization): treat all variables as NC
• Resource allocation framework that exploits problem structure:

• improved performance
• numerically stable and guaranteed convergence
• feasible solution even if terminated prematurely

• Numerical evaluation of rate spli�ing vs. “true” SND [1] vs. “traditional” SND vs. IAN
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Motivation
• Heterogeneous dense small-cell

networks:
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• Wireless board-to-board
communication in highly
adaptive computing:

R

3 2

1
Board 1

Board 2

Board 3

• Industry 4.0:
• Satellite Communications:
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System Model & Achievable Rate Regions
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Block diagram of the 3-user Gaussian MWRC with multiple unicast transmissions and amplify-and-forward relaying.

• Gaussian channels: Tx power Pk ≤ P̄k, noise Zk ∼ CN (0,Nk), SNR Sk =
Pk
Nr
≤ S̄k =

P̄k
NR

.
• Node k transmits msg Mk to q(k) and receives Ml(k). l(k) is interfering with transmission of Mk.

• Relay amplification: For relay Tx power PR choose α =
√

PR/
(∑

k∈K|hk|2Pk+NR
)
.

A rate triple (R1, R2, R3) is achievable for the Gaussian MWRC with AF relaying if, for all k ∈ K,
Rk < Bk, Rk + Rq(k) < Ak + Dq(k),

RΣ < Ak + Cq(k) + Dl(k), Rk + RΣ < Ak + Cq(k) + Cl(k) + Dk,

and, RΣ < C1 + C2 + C3,

with Ak = log
(
1 +
|hk|2 S

p
k

γk(S)

)
, Bk = log

(
1 +
|hk|2 (Spk + Sck)

γk(S)

)
,

Ck = log
(
1 +
|hk|2S

p
k + |hl(k)|2Scl(k)

γk(S)

)
, Dk = log

(
1 +
|hk|2(S

p
k + Sck) + |hl(k)|2Scl(k)

γk(S)

)
,

where Sck+Spk ≤ S̄k and γk(S) = 1+|hl(k)|2S
p
l(k)

+ g̃−1q(k)

(
1 +

∑
i∈K |hi|2 (Sci + Spi )

)
,with g̃k = |gk|2 P̄0

Nk
.

Lemma (Rate Spli�ing [2])

A rate triple (R1, R2, R3) is achievable for the Gaussian MWRC with AF relaying if, for all k ∈ K,

Rk ≤ log
(
1 +
|hk|2 Sk
γk(S)

)
or

Rk ≤ log
(
1 +
|hk|2 Sk
δk(S)

)

Rk + Rl(k) ≤ log
(
1 +
|hk|2 Sk + |hl(k)|2Sl(k)

δk(S)

)

where Sk ≤ S̄k, γk(S) and g̃k as above, and δk(S) = 1 + g̃−1q(k)

(
1 +

∑
i∈K |hi|2 Si

)
.

Lemma (Single Message)

Problem Statement

max
R,S

∑

k∈K
wkRk

s. t. R ∈ R(S)

R ≥
¯
R, S ∈ [0, S̄]

Problem (R) • w ∈ R3
≥0 \ {0}, ¯

R ≥ 0, S̄ > 0
• R(S) achievable rate region: Non-convex in S, linear in R
• RHS ofR(S):

log
(
1 +

aTS
bTS + c

)
= log((a + b)TS + c)− log(bTS + c)

→ Di�erence of Increasing & Concave functions

Goal: Exploit problem structure & branch only over non-convex variables

Robust Global Optimization [3]

max
x∈[a,b]

f (x)

s. t. gi(x) ≤ 0, i = 1, 2, . . . ,m

Problem (P) • gi, i = 1, 2, . . . ,m: Non-convex functions
• Usual approach: Solve ε-relaxed problem
• This approach has numerical problems:

• Convergence in finite iterations not guaranteed
• Might give incorrect solution far away from optimum

Consider a MAC with QoS and individual eavesdropper information leakage constraints:
min
p1,p2

p1

s. t. log(1 + |h1|2 p1 + |h2|2 p2) ≥ Q + ε (QoS)

log(1 + |g1|2 p1) + log(1 + |g2|2 p2) ≤ L + ε (Leakage)
p1 ≤ P1, p2 ≤ P2

Numerical example:
• |hi|2 = 10, |g1|2 = 1

2, |g2|2 = 1, Q = log(61), L = log(8.99)

• True optimal solution: p? = (4.00665, 1.99335)

• ε-approximate solution p̄(ε):
• ε1 = 10−3: p̄(ε1) = (0.995843, 5)
• ε2 = 10−4: p̄(ε2) = (4.00541, 1.99417)
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Example (Numerical Problems of ε-Approximate Solutions)

A solution of (P) is said to be essential (ε, η)-optimal if it satisfies
f (x∗) + η ≥ sup{f (x)|x ∈ [a, b], ∀i : gi(x) ≤ −ε}, for some η > 0.

Solution: ε-essential feasibility

• ε, η → 0: essential (ε, η)-optimal solution is a
nonisolated feasible point which is optimal

• SIT: Sequence of feasibility problems
min

x∈[a,b]
max

i=1,...,m
gi(x) s. t. f (x) ≥ γ (Qγ)

• ∀ε > 0 : min(Qγ) > −ε ⇒ max(Pε) < γ

• E�icient solution with Branch-and-Bound if
f (x) is concave

Successive Incumbent Transcending (SIT):
• Initialize γ ≤ f (x) ∀x ∈ F .
• Find nonisolated feasible solution x satisfying
f (x) ≥ γ of (P) or establish that no such
ε-essential feasible x exists and terminate.

• Update x̄ ← x and γ ← f (x̄) + η. Repeat.
• Terminate: x̄ is an essential (ε, η)-optimal

solution; else (P) is ε-essential infeasible.

Application to Resource Allocation Problems

max
(x,ξ)∈C

f (x, ξ)

s. t. g+
i (x, ξ)− g−i (x) ≤ 0, i = 1, . . . ,m

Problem (R)

min
(x,ξ)∈C

max
i=1,...,m

(
g+
i (x, ξ)− g−i (x)

)

s. t. f (x, ξ) ≥ γ

Dual Problem (Q)

• Non-convex variables x, convex variables ξ; −f , g+
i convex; g−i convex & decreasing

• Dual Problem has convex feasible set→ no isolated feasible points!
• Core Problem: Compute lower bound for (Q) over box M = [p, q]:

min
(x,ξ)∈C

max
i=1,...,m

(
g+
i (x, ξ)− g−i (p)

)
s. t. f (x, ξ) ≥ γ, x ∈ M

→ Convex optimization problem

Rate Spli�ing:
• Naive implementation: ξ = R, x = S→ 6 non-convex variables
• Non-convexity due to negative log(γk(S)) terms: substitute y =

∑
k∈K |hk|2 Sck→ 4 NC vars

max
R,S,y

wTR

s. t. aTi R− L+
i (S, y) + L−i (Sp, y) ≤ 0, i = 1, 2, . . .

y =
∑

k∈K |hk|
2 Sck

Sck + Spk ≤ S̄k, k ∈ K, R ≥
¯
R, S ≥ 0

L+
i (S, y) =

∑

j∈Ii
log(fj(S) + γj(Sp, y))

L−i (Sp, y) =
∑

j∈Ii
log(γj(Sp, y))

Single Message:
• Rate region: R =

⋂
k∈K(Rk,IAN ∪Rk,SND) =

⋃
d∈{IAN,SND}|K|

⋂
k∈KRk,dk

• Optimization problem: supx∈⋃iDi
f (x) = maxi supx∈Di

f (x)→ Solve 8 individual problems

Numerical Evaluation
• SND dominates “traditional” SND and IAN:

Gain solely due to per user decoder selection
(10 dB: 18 % / 0.48 bpcu & 12 % / 0.32 bpcu)

• Average gain of Rate Spli�ing small
(0.2 bpcu @ 25 dB)

• For some channels: Up to 0.5 bpcu @ 10 dB

Future work:
• Energy e�iciency
• Improve bounding
→ Journal version in the making
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MWRC with AF relaying. Averaged over 800 i.i.d. channel realizations.

References

[1] B. Bandemer, A. El Gamal, and Y.-H. Kim, “Optimal achievable rates for interference networks with random codes”, IEEE Trans. Inf. Theory, vol. 61, no. 12, pp. 6536–6549, Oct. 2015.
[2] B. Ma�hiesen and E. A. Jorswieck, “Instantaneous relaying for the 3-way relay channel with circular message exchanges”, in 49th Asilomar Conf. on Signals, Syst., and Comput., Pacific Grove, CA, Nov. 2015.
[3] H. Tuy, “D(C)-optimization and robust global optimization”, J. Global Optim., vol. 47, no. 3, pp. 485–501, Oct. 2009.


