Nonnegative Tensor Completion

- Let $\mathcal{X} \in \mathbb{R}_{+}^{I \times J \times K}$ be an incomplete tensor, and $\Omega \subseteq\{1 \ldots /\} \times\{1 \ldots J\} \times\{1 \ldots K\}$ be the set of indices of its known entries [1].
- Also, let $\mathcal{M} \in \mathbb{R}^{I \times J \times K}$ with

$$
\mathcal{M}(i, j, k)=\left\{\begin{array}{l}
1, \text { if }(i, j, k) \in \Omega, \tag{1}\\
0, \text { otherwise. }
\end{array}\right.
$$

- We consider the Nonnegative Tensor Completion (NTC) problem

$$
\min _{\mathbf{A} \geq 0, B \geq 0, \mathbf{C} \geq 0} f_{\Omega}(\mathbf{A}, \mathbf{B}, \mathbf{C})+\frac{\lambda}{2}\|\mathbf{A}\|_{F}^{2}+\frac{\lambda}{2}\|\mathbf{B}\|_{F}^{2}+\frac{\lambda}{2}\|\mathbf{C}\|_{F}^{2},
$$

where $\mathbf{A}=\left[\begin{array}{lll}\mathbf{a}_{1} & \cdots & \mathbf{a}_{R}\end{array}\right] \in \mathbb{R}_{+}^{\prime \times R}, \mathbf{B}=\left[\mathbf{b}_{1} \cdots \mathbf{b}_{R}\right] \in \mathbb{R}_{+}^{J \times R}, \mathbf{C}=\left[\begin{array}{llll}\mathbf{c}_{1} & \cdots & \mathbf{c}_{R}\end{array}\right] \in \mathbb{R}_{+}^{K \times R}$, and

$$
f_{\Omega}(\mathbf{A}, \mathbf{B}, \mathbf{C})=\frac{1}{2}\|\mathcal{M} \circledast(\mathcal{X}-[\mathbf{A}, \mathbf{B}, \mathbf{C}])\|_{F}^{2},
$$

with

$$
\begin{equation*}
[\mathbf{A}, \mathbf{B}, \mathbf{C}]=\sum_{r=1}^{R} \mathbf{a}_{r} \circ \mathbf{b}_{r} \circ \mathbf{c}_{r} . \tag{4}
\end{equation*}
$$

Alternating optimization framework

- We can derive matrix-based equivalent expressions of f_{Ω} as

$$
\begin{align*}
f_{\Omega}(\mathbf{A}, \mathbf{B}, \mathbf{C}) & =\frac{1}{2}\left\|\mathbf{M}_{\mathbf{A}} \circledast\left(\mathbf{x}_{\mathbf{A}}-\mathbf{A}(\mathbf{C} \odot \mathbf{B})^{T}\right)\right\|_{F}^{2}=\frac{1}{2}\left\|\mathbf{M}_{\mathbf{B}} \circledast\left(\mathbf{x}_{\mathbf{B}}-\mathbf{B}(\mathbf{C} \odot \mathbf{A})^{T}\right)\right\|_{F}^{2} \tag{5}\\
& =\frac{1}{2}\left\|\mathbf{M}_{\mathbf{C}} \circledast\left(\mathbf{x}_{\mathbf{C}}-\mathbf{C}(\mathbf{B} \odot \mathbf{A})^{T}\right)\right\|_{F}^{2},
\end{align*}
$$

where $\mathbf{M}_{\mathbf{A}}, \mathbf{M}_{\mathbf{B}}, \mathbf{M}_{\mathbf{C}}$, and $\mathbf{X}_{\mathbf{A}}, \mathbf{X}_{\mathbf{B}}, \mathbf{X}_{\mathbf{C}}$ are the matrix unfoldings of \mathcal{M} and \mathcal{X}, respectively.

- Solving (2) for $\mathbf{A}, \mathbf{B}, \mathbf{C}$ is a non-convex problem.
- Alternating optimization (AO):
- Initialize $\mathbf{A}_{0}, \mathbf{B}_{0}, \mathbf{C}_{0}, l=0$.
${ }_{1} \mathbf{A}_{l+1}=\underset{A}{ }=\underset{A}{\operatorname{argmin}} f_{\Omega}(\mathbf{A}):=\frac{1}{2}\left\|\mathbf{M}_{\mathbf{A}} \circledast\left(\mathbf{X}_{\mathbf{A}}-\mathbf{A}\left(\mathbf{C}_{l} \odot \mathbf{B}_{1}\right)^{\top}\right)\right\|_{F}^{2}+\frac{\lambda}{2}\|\mathbf{A}\|_{F}^{2}$.
$2 \mathbf{B}_{\mid+1}=\underset{\mathbf{B} \boldsymbol{g} \geq 0}{\operatorname{argmin}} f_{\Omega}(\mathbf{B}):=\frac{1}{2}\left\|\mathbf{M}_{\mathbf{B}} \circledast\left(\mathbf{X}_{\mathbf{B}}-\mathbf{B}\left(\mathbf{C}_{(} \odot \mathbf{A}_{l+1}\right)^{\top}\right)\right\|_{F}^{2}+\frac{\lambda}{2}\|\mathbf{B}\|_{F}^{2}$.
$3 \mathbf{C}_{l+1}=\operatorname{argmin} f_{\Omega}(\mathbf{C}):=\frac{1}{2}\left\|\mathbf{M}_{\mathbf{C}} \circledast\left(\mathbf{X}_{\mathbf{C}}-\mathbf{C}\left(\mathbf{B}_{l+1} \odot \mathbf{A}_{l+1}\right)^{\top}\right)\right\|_{F}^{2}+\frac{\lambda}{2}\|\mathbf{C}\|_{F}^{2}$.
- Iterate 1, 2, 3 until convergence.

Nonnegative Matrix Completion

- Let $\mathbf{X} \in \mathbb{R}_{+}^{m \times n}$ be an incomplete matrix, and $\Omega \subseteq\{1 \ldots m\} \times\{1 \ldots n\}$ be the set of indices of its known entries.
- Also, let $\mathbf{A} \in \mathbb{R}_{+}^{m \times r}, \mathbf{B} \in \mathbb{R}_{+}^{n \times r}$, and $\mathbf{M} \in \mathbb{R}^{m \times n}$ with

$$
\mathbf{M}(i, j)=\left\{\begin{array}{l}
1, \text { if }(i, j) \in \Omega, \tag{6}\\
0, \text { otherwise. }
\end{array}\right.
$$

- We consider the Nonnegative Matrix Completion (NMC) problem

$$
\begin{equation*}
\min _{\mathbf{A} \geq \mathbf{0}} f_{\Omega}(\mathbf{A}):=\frac{1}{2}\left\|\mathbf{M} \circledast\left(\mathbf{X}-\mathbf{A} \mathbf{B}^{T}\right)\right\|_{F}^{2}+\frac{\lambda}{2}\|\mathbf{A}\|_{F}^{2} \tag{7}
\end{equation*}
$$

- The gradient and the Hessian of f_{Ω}, at point \mathbf{A}, are given by

$$
\nabla f_{\Omega}(\mathbf{A})=-\left(\mathbf{M} \circledast \mathbf{X}-\mathbf{M} \circledast \mathbf{A B}^{T}\right) \mathbf{B}+\lambda \mathbf{A},
$$

$$
\nabla^{2} f_{\Omega}(\mathbf{A})=\left(\mathbf{B}^{T} \otimes \mathbf{I}\right) \operatorname{diag}^{2}(\operatorname{vec}(\mathbf{M}))(\mathbf{B} \otimes \mathbf{I})+\lambda \mathbf{I} .
$$

Nesterov-Type Algorithm for NMC

Algorithm 1: $\mathbf{A}_{\text {opt }}=\operatorname{NNMC}\left(\mathbf{X}, \mathbf{M}, \mathbf{B}, \mathbf{A}_{*}\right)$
Input: $\mathbf{X}, \mathbf{M} \in \mathbb{R}^{m \times n}, \mathbf{B} \in \mathbb{R}_{+}^{n \times r}, \mathbf{A}_{*} \in \mathbb{R}_{+}^{m \times r}, \lambda, \mu, L$
$\mathbf{W}=-(\mathbf{M} \circledast \mathbf{X}) \mathbf{B}$
$q=\frac{\mu+\lambda}{+\lambda}$
$\mathbf{A}_{0}=\boldsymbol{Y}_{0}=\mathbf{A}$
$\mathrm{A}_{0}=\mathbf{Y}_{0}=\mathbf{A}_{*}$

while (1) do

$\nabla f_{2}(\mathbf{Y})=\mathbf{W}+\left(\mathbf{M} \circledast \mathbf{Y}^{\boldsymbol{T}} \mathbf{B}^{\top} \mathbf{)} \mathbf{B}+\lambda \mathbf{Y}_{\boldsymbol{\prime}}\right.$
if (term cond is TRUE) then
break
else
$\mathbf{A}_{\mathbf{L}_{1+1}}=\left(\mathbf{Y}_{1}-\frac{1}{L-\nabla} \nabla f_{2}\left(\mathbf{Y}_{1}\right)\right)$
$\alpha_{l+1}^{2}=\left(1-\alpha_{++1}\right) \alpha_{1}^{2}+q \alpha_{++1}^{+}$
$\beta_{l+1}=\frac{a(1)-\alpha)_{1}}{a^{2}+\alpha_{l+1}}$
$\mathbf{Y}_{l+1}=\mathbf{A}_{l+1+1}+\beta_{l+1}\left(\mathbf{A}_{l+1}-\mathbf{A}_{l}\right)$
$1=1+1$
return A

Nesterov Based AO NTC

Algorithm 2: Nesterov-based AO NTC
Input: $\mathcal{X}, \Omega, \mathbf{A}_{0}>\mathbf{0}, \mathbf{B}_{0}>\mathbf{0}, \mathbf{C}_{0}>\mathbf{0}$.
$1=0$
$\mathbf{A}_{l+1}=\operatorname{NNMC}\left(\mathbf{X}_{\mathbf{A}}, \mathbf{M}_{\mathbf{A}},\left(\mathbf{C}_{/} \odot \mathbf{B}_{I}\right), \mathbf{A}_{1}\right)$
$\mathbf{B}_{l+1}=\mathbf{N} \operatorname{NMC}\left(\mathbf{X}_{\mathbf{B}}, \mathbf{M}_{\mathbf{B}},\left(\mathbf{C}_{/} \odot \mathbf{A}_{l+1}\right), \mathbf{B}_{/}\right)$
$\mathbf{C}_{l+1}=\operatorname{N} \operatorname{NMC}\left(\mathbf{X}_{\mathbf{C}}, \mathbf{M}_{\mathbf{c}},\left(\mathbf{A}_{l+1} \odot \mathbf{B}_{l+1}\right), \mathbf{C}_{l}\right)$
if (term cond is TRUE) then break; endif
$I=I+1$
return A_{1}, B_{1}, C_{1}.

Computation of W_{A} and Z_{A}

$$
\begin{equation*}
\mathbf{W}_{\mathbf{A}}=\left(\mathbf{M}_{\mathbf{A}} \circledast \mathbf{X}_{\mathbf{A}}\right)(\mathbf{C} \odot \mathbf{B}), \quad \mathbf{z}_{\mathbf{A}}=\left(\mathbf{M}_{\mathbf{A}} \circledast \mathbf{A}(\mathbf{C} \odot \mathbf{B})^{T}\right)(\mathbf{C} \odot \mathbf{B}) . \tag{10}
\end{equation*}
$$

- The i-th row of $\mathbf{W}_{\mathbf{A}}$, for $i=1, \ldots, l$, is computed as

$$
\begin{equation*}
\mathbf{W}_{\mathbf{A}}(i,:)=\left(\mathbf{M}_{\mathbf{A}}(i,:) \circledast \mathbf{X}_{\mathbf{A}}(i,:)\right)(\mathbf{C} \odot \mathbf{B}) . \tag{11}
\end{equation*}
$$

- The computation involves the multiplication of a $(1 \times J K)$ row vector and a $(J K \times R)$ matrix.
- In order to reduce the computational complexity, we must exploit the sparsity of \mathcal{X}.
- Let $n n z_{i}$ be the number of known entries in the i-th horizontal slice of \mathcal{X}. Also, let these known entries have indices $\left(i, j_{q}, k_{q}\right) \in \Omega$, for $q=1, \ldots, n n z_{i}$.
- The computation of the i-th row of W_{A} reduces to

$$
\begin{equation*}
\mathbf{W}_{\mathbf{A}}(i,:)=\sum_{q=1}^{n n z_{i}} \boldsymbol{\mathcal { X }}\left(i, j_{q}, k_{q}\right) \mathbf{C}\left(k_{q},:\right) \circledast \mathbf{B}\left(j_{q,:}\right) . \tag{12}
\end{equation*}
$$

Distributed Memory Implementation

Figure: Tensor partition

- We assume p processing elements [2].
- We partition the matricization $\mathbf{X}_{\mathbf{A}}$ into p block rows as $\mathbf{X}_{\mathbf{A}}=\left[\left(\mathbf{X}_{\mathbf{A}}^{1}\right)^{T} \ldots\left(\mathbf{X}_{\mathbf{A}}^{p}\right)^{T}\right]^{T}$, with $\mathbf{X}_{\mathbf{A}}^{n} \in \mathbb{R}^{\frac{1}{p} \times J K}$. We partition similarly $\mathbf{X}_{\mathbf{B}}$ and $\mathbf{X}_{\mathbf{C}}$.
- The n-th block row of $\mathbf{X}_{\mathbf{A}}, \mathbf{X}_{\mathbf{B}}, \mathbf{X}_{\mathbf{C}}$ have been allocated to the n-th processing element, for $n=1, \ldots, p$ - We partition \mathbf{A}_{l} into p block rows as $\mathbf{A}_{l}=\left[\left(\mathbf{A}_{l}^{1}\right)^{T} \cdots\left(\mathbf{A}_{l}^{p}\right)^{T}\right]^{T}$, with $\mathbf{A}_{l}^{n} \in \mathbb{R}^{\frac{1}{p} \times R}$, for $n=1, \ldots, p$.
- The n-th processor knows the whole \mathbf{A}_{l}, but updates the n-th block row of $\mathbf{A}_{l}, \mathbf{A}_{l}^{n}$, for $n=1, \ldots, p$.

Factor Update Implementation

The update of \mathbf{A}_{l} is achieved via the updates of \mathbf{A}_{l}^{n}, for $n=1, \ldots, p$:

- The n-th processing element uses its local data $\mathbf{X}_{\mathbf{A}}^{n}$, as well as the whole matrices $\mathbf{B}_{/}$and $\mathbf{C}_{/}$, and computes the n-th block row of matrix $\mathbf{A}_{l+1}, \mathbf{A}_{l+1}^{n}$, via the Nesterov Matrix Completion algorithm.
- Each processing element broadcasts its output to all other processing elements; this operation can be implemented via an Allgather operation.
At this point, all processors know \mathbf{A}_{l+1} and are ready for the update of $\mathbf{B}_{/}$(and, then, of $\mathbf{C}_{/}$)

Numerical Experiments

- Results obtained from a Message Passing Interface (MPI) implementation of the AO NTC.
- The program is executed on a DELL PowerEdge R820 system with SandyBridge - Intel(R) Xeon(R)

CPU E5 - 4650v2 (in total, 16 nodes with 40 cores each at 2.4 Gz) and 512 GB RAM per node.

- The matrix operations are implemented using routines of the C++ library Eigen [3].
- The performance metric we compute is the speedup attained using p processors.

Real Data

- The MovieLens 10M dataset [4], which contains time-stamped ratings of movies.
- Binning the time into seven-day-wide bins, results in a tensor of size $71567 \times 65133 \times 171$
- The number of samples is 8 M (99.99% sparsity).
- We first perform a random permutation on our data to resolve load imbalance issues.
- We measure the completion accuracy by measuring the mean squared error of 2M known ratings with our predictions. The mean squared error we achieved is 0.0033 (For the n-th known rating, with indices $\left(i_{n}, j_{n}, k_{n}\right)$, we compute our prediction after rounding the quantity $\sum_{r=1}^{R} \mathbf{A}\left(i_{n},:\right) \circledast \mathbf{B}\left(j_{n},:\right) \circledast \mathbf{C}\left(k_{n},:\right.$) to the closest integer. $)$

Speed Up

Figure: Speedup achieved for the MovieLens 10 M dataset of size $71567 \times 65133 \times 171$ with p cores, for $p=1,5,20,171$.

Synthetic Data

- Synthetic data of the same size and sparsity level.
- True latent factors with i.i.d elements, uniformly distributed in $[0,1]$

Speed Up

Figure: Speedup achieved for a $71567 \times 65133 \times 171$ tensor with p cores, for $p=1,5,20,171$.

References

1. L. Karlsson, D. Kressner and A. Uschmajew, "Parallel algorithms for tensor completion in the CP format," Parallel Computing, 2015.
K. Shin U. Kang, "Distributed Methods for High-dimensional and Large-scale Tensor Factorization, IEEE International Conference on Data Mining, pp. 989-994, 2014
2. G. Guennebaud and B. Jacob et al., "Eigen v3," http://eigen.tuxfamily.org, 2010.
3. F. Maxwell Harper and J. A. Konstan, "The MovieLens Datasets: History and Context," ACM Transactions on Interactive Intelligent Systems (TiiS), vol. 5, no. 4, pp. 1-19, June, 2015
