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ABSTRACT

We propose a spatiotemporal attention based deep neural networks
for dimensional emotion recognition in facial videos. To learn
the spatiotemporal attention that selectively focuses on emotional
sailient parts within facial videos, we formulate the spatiotemporal
encoder-decoder network using Convolutional LSTM (ConvLSTM)
modules, which can be learned implicitly without any pixel-level
annotations. By leveraging the spatiotemporal attention, we also for-
mulate the 3D convolutional neural networks (3D-CNNs) to robustly
recognize the dimensional emotion in facial videos. The experimen-
tal results show that our method can achieve the state-of-the-art
results in dimensional emotion recognition with the highest concor-
dance correlation coefficient (CCC) on RECOLA and AV+EC 2017
dataset.

Index Terms— Emotion Recognition, Spatiotemporal atten-
tion, Convolutional Long Short-Term Memory, Recurrent Neural
Network

1. INTRODUCTION

Emotion recognition has been one of the most important and fun-
damental problems in the development of interactive computer sys-
tems [1–3]. The ability to recognize facial expression and/or emo-
tion is essential for a wide range of applications such as pain detec-
tion [4] and psychological distress [5].

Conventionally, most of efforts in emotion recognition [2, 6–9]
have focused on categorical emotion description, where emotions
are grouped into discrete categories such as surprise, fear, etc. [10,
11]. In the last few years, several methods have tried to recognize
the six basic emotions using handcrafted [6–8] or learned [2, 9] fea-
ture based approaches. Although the state-of-the-art methods have
shown satisfactory performance in categorical emotion recognition,
those six basic emotions do not cover the full range of possible emo-
tions, which hinders the application of emotion recognition methods
to practical systems. An alternative way to represent emotions is di-
mensional emotion description [12], where emotions are described
in a continuous domain, and Arousal and Valence are two representa-
tive domains. Arousal represents how engaged or apathetic a subject
appears while valence represents how positive or negative a subject
appears. Those models can represent more complex and subtle emo-
tions with the higher-dimensional descriptions, which could be par-
ticularly useful for representing an untrimmed facial video data as
exemplified in Fig. 1.

Over the past few years, deep convolutional neural networks
(CNNs) based methods have shown substantially improved perfor-
mance in emotion recognition tasks [1, 2, 9, 14]. However, most of
those methods which use CNNs only cannot encode temporal in-
formation for a facial video sequence, and thus have shown limited

(a) (b) (c) (d)

Fig. 1. Four type of surprise defined by Ekman [13] : (a) a question-
ing surprise, (b) astonished surprise, (c) dazed surprise, and (d) full
surprise expression. Categorical emotion cannot cover full range of
emotion (e.g., surprise represents the above four type of surprise),
but dimensional emotion can represent subtle emotions. In addition,
expression changes of surprise are represented in just two areas of
the face, e.g., mouth (red box) and eye (green box), which exem-
plifies that estimating emotional sailent parts within facial videos is
essential for recognizing emotion robustly.

performances for recognizing emotion in an untrimmed facial video.
Although recurrent neural networks (RNNs) [1] and long short-term
memory (LSTM) [15] have been used for understanding the facial
video, they also have shown limited performances due to the lack of
a mechanism for implicitly considering salient parts on the face.

On the other hands, facial action units (AUs) based emotion
recognition approaches [9, 16] have found that only a small num-
ber of regions (e.g., eyes, nose, and mouth) activate as a human
changes their emotional expression [9], and attempt to detect AUs
to estimate facial expression and recognize emotion by leveraging
detected AUs [16]. However, those existing methods are based on
the manual definition of individual AUs [9,16], thus producing defi-
nite limitations in terms of providing optimal performance.

To overcome these issues, we propose a novel deep architecture
that implicitly learn a spatiotemporal attention and estimate dimen-
sional emotion for a facial video sequence. Specifically, we formu-
late a novel encoder-decoder network to learn spatiotemporal atten-
tion, where it first extracts the feature with spatial associations of
each frame using 2D-CNNs and then estimates spatiotemporal atten-
tion using convolutional LSTM (ConvLSTM). Unlike conventional
LSTM [17] is used to sequence learning [18], ConvLSTM enables
us to maintain a spatial locality in the cell state while encoding the
temporal correlation, and thus our attention inference module can es-
timate the attentive facial parts both spatially and temporally. Based
on this spatiotemporal attention, the emotion recognition network is
formulated using successive 3D convolutional neural networks (3D-
CNNs) to deal with the sequential data. With a simple fusion scheme
that convolutional activations from all frames within the input video
are multiplied with estimated spatiotemporal attention, our network
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Fig. 2. The proposed learning framework for dimensional emotion recognition (valence score).

provides the state-of-the-art performance in the dimensional emotion
recognition task for the facial video sequence.

2. PROPOSED METHOD

2.1. Problem Formulation and Overview

Let us define a facial video clip composed of a sequence of T frames
as I1:T = {I1, I2, ..., IT }. The objective of dimensional emotion
recognition is to regress a valence score y ∈ [−1, 1] for each input
frame I1:T . We propose the novel learnable module that implicitly
estimates spatiotemporal attention for the video. Our key-ingradient
is to first extract the features of each frame with spatial associations
using 2D-CNNs and then estimate spatiotemporal attention of the
video using ConvLSTM (Section 2.2). The dimensional emotions of
each frame are estimated by leveraging 3D-CNNs to encode both ap-
pearance and motion information simultaneously (Section 2.3). Fig.
2 shows the overall network configuration of our emotion recogni-
tion system.

2.2. Spatiotemporal Attention Network

We first introduce the attention inference network to predict a spa-
tiotemporal attention for a facial video, which discovers emotional
salient parts of the face. Since there is no supervision for the spa-
tiotemporal attention, we design the inference network within a fully
convolutional network in manner where the attention can be learned
implicitly during learning the emotion recognition module only with
the supervision of a valence label.

2.2.1. Spatial Encoder Network

Previous attention-based technique has learned attention by stack of
LSTM (or RNNs) modules [18]. Although the method can employ
temporal information, this model cannot take spatial correlation into
consideration. To alleviate this limitation, we propose the feature
encoder of 2D-CNNs. We extract convolutional feature activation
X1:T for each frame I1:T within a Siamese network [19], where the
weights and biases of each kernel are shared (i.e., replicated across
all frames and updated together during training phase), enabling us
to reduce the number of parameters and prevent over-fitting problem.
Specifically, the spatial encoder network consists of successive 3×3
convolution layers and rectified linear unit (ReLU) layers, followed

by max-pooling layers with stride 2 × 2. To predict the attention
with the same size of original images, those convolutional activa-
tions are enlarged through the temporal decoder network which will
be described in Sec. 2.2.2.

2.2.2. Temporal Decoder Network

For convolutional features X1:T from the spatial encoder network,
the temporal decoder network predicts the spatiotemporal attention
for all T frames. The decoder network progressively enlarges the
spatial resolution of X1:T through sequential deconvolutions sim-
ilar to [19, 20]. Unlike other deconvolution layers as in [19, 20],
we utilize ConvLSTM modules that encode the temporal correla-
tion across inter-frames while preserving the spatial structure over
sequences. Moreover, unlike LSTM that operates over sequences
of vectors and performs biased linear transformations, ConvLSTM
module has convolutional structures in both input-to-state and state-
to-state transitions as follows:

it = σ(Wxi ∗Xt +Whi ∗Ht−1 +Wci ∗ ct−1 + bi),
ft = σ(Wxf ∗Xt +Whf ∗Ht−1 +Wcf ∗ ct−1 + bf ),
ct = ft � ct−1 + it � tanh(Wsc ∗Xt +Whc ∗Ht−1 + bc),
ot = σ(Wxo ∗Xt +Who ∗Ht−1 +Wco � ct + bo),
ht = ot � tanh(ct),

(1)
where σ(·) and tanh(·) are the logistic sigmoid and hyperbolic tan-
gent (tanh) non-linearities, it, ft, ot, ct and ht are vectors to repre-
sent values of the input gate, forget gate, output gate, cell activation,
and cell output at time t, respectively. ∗ denotes the convolution
operator and � denotes the Hadamard product. W∗ are the filter
matrices connecting different gates, and b∗ are the corresponding
bias vectors. The recurrent connections operate only over the tem-
poral dimension, and use local convolutions to capture spatial con-
text. With the ConvLSTM module, our temporal decoder network is
composed of 3 × 3 ConvLSTM and tanh [21]. To enlarge the spa-
tial resolution of Xt, we build the sequence of deconvolution with a
factor of 2.

2.2.3. Spatiotemporal Attention Inference

Our spatiotemporal attention is used as a soft attention in a manner
that this attention is multiplied to 3D convolutional feature activa-
tions. To this end, we first normalize the attention map spatially by



using the spatial softmax defined as follows [18]:

At,i =
exp(WT

i Ht−1)∑
j exp(W

T
j Ht−1)

i ∈ 1 · · ·H ×W, (2)

where Ht−1 is the hidden state, Wi are the weights mapping to the
ith element of the location softmax and j is defined for all locations.
Through this spatial softmax, final spatiotemporal attention A1:T

can be estimated. Note that our method does not need explicit pre-
defined AUs and salient facial regions, and the attention inference
module can be learned implicitly through the proposed network.

2.3. Emotion Recognition Network

By leveraging the spatiotemporal attention A1:T , our method esti-
mates a dimensional emotion for the facial video I1:T . While the
2D-CNNs [1] can be used to predict the emotion for the facial video,
it processes multiple input frames as different input channels inde-
pendently, thus providing limited performances. To overcome this
limitation, we employ the 3D-CNNs to deal with temporal informa-
tion, which simultaneously consider spatial and temporal correla-
tions across the input frames and directly regress the emotion.

To elegantly incorporate the spatiotemporal attention to emotion
recognition through 3D-CNNs, we first extract convolutional feature
activation X ′1:T using 3D convolutional layers for the video I1:T as
an input. Then, we multiply spatiotemporal attention A1:T to X ′1:T
to estimate the attention-boosted feature activations as follows:

X ′′ = A�X ′. (3)

For the attention-boosted feature activations X ′′, we finally
formulate an additional 3D convolutional layers to infer dimen-
sional emotion ŷ. This emotion prediction network has four 3D-
convolution layers, three 3D max-pooling layers, and two fully-
connected layers. The number of filters for four convolution layers
are 32, 64, 128 and 256, respectively. The last fully-connected layer
has a single output channels as f and we use a linear regression
layer to estimate the output valence. We use the mean squared error
as loss function. Our overall network can be learned only with a
ground-truth valence label as a supervision.

3. EXPERIMENTAL RESULTS AND DISCUSSION

3.1. Implementation Details

To recognize the emotion from a facial video, we first detected the
face in each video frame using face and landmark detector in Dlib-
ml [22], and then cropped the detected face region. We then mapped
the detected landmark points to pre-defined pixel locations in order
to normalize the eye and nose coordinates between adjacent frames.

We implemented our network using the TensorFlow library [23].
To reduce the effects of the network overfitting, we employed the
dropout scheme with the ratio of 0.5 between fully-connected layer,
and data augmentation schemes such as flips, contrast, and color
changes. For training datasets, input videos in the training set were
split into non-overlapped 16-frame clips. Thus, the input of model
has a frame rate of 4 fps. For optimization, We chose Adam [24] due
to its faster convergence than standard stochastic gradient descent
with momentum. We trained our networks from scratch using mini-
batches of 16 clips, with initial learning rate as λ = 1e − 4. The
filter weights of each layer were initialized by Xavier distribution,
which was proposed by Glorot and Bengio [25], due to its properly
scaled uniform distribution for initialization.

Table 1. Analysis on the performance of each component of the
proposed network.

2D-CNN 3D-CNN STA RMSE CC CCC
X 0.113 0.426 0.326

X 0.104 0.510 0.493
X X 0.102 0.572 0.546

Table 2. The qualitative evaluation of the predicted valence on
RECOLA dataset [28]. The results with the lowest RMSE and high-
est CC/CCC were highlighted.

Method RMSE CC CCC
Baseline [26] 0.117 0.358 0.273

CNN [1] 0.113 0.426 0.326
CNN + RNN (≈ 1 sec.) [1] 0.111 0.501 0.474
CNN + RNN (≈ 4 sec.) [1] 0.108 0.544 0.506
LGBP-TOP + LSTM [29] 0.114 0.430 0.354

LGBP-TOP + Bi-Dir. LSTM [15] 0.105 0.501 0.346
LGBP-TOP + LSTM + ε-loss [30] 0.121 0.488 0.463

CNN + LSTM + ε-loss [30] 0.116 0.561 0.538
3D-CNN + STA (≈ 4 sec.) 0.102 0.572 0.546

Table 3. The qualitative evaluation of the predicted valence on
AV+EC 17 dataset [31]. The results with the lowest RMSE and high-
est CC/CCC were highlighted.

Method RMSE CC CCC
Baseline [31] - - 0.400

CNN [1] 0.114 0.564 0.528
CNN + RNN (≈ 4 sec.) [1] 0.104 0.616 0.588
3D-CNN + STA (≈ 4 sec.) 0.099 0.638 0.612

For all investigated methods, we interpolated the valence scores
from adjacent frames related to dropped frames that the face detector
missed. In addition, following the AV+EC‘s post-processing pro-
cedure of predictions [26, 27], we applied the same chain of post-
processing on the obtained predictions; smoothing, centering and
scaling except time-shifting.

3.2. Results
Experimental settings In order to evaluate the performance of the
proposed method quantitatively, we computed three metrics: (i) Root
Mean Square Error (RMSE), (ii) Pearson Correlation Coefficient
(CC), and (iii) Concordance Correlation Coefficient (CCC) as used
in [1]. Especially, the CCC tries to measure the agreement between
two variables using the following expression:

ρc =
2ρσxσy

σ2
x + σ2

y + (µx − µy)2
(4)

where ρ is the Pearson correlation coefficient, σ2
x and σ2

y are the
variance of the predicted and ground truth values, and µx and µy are
their means, respectively. The highest CC and CCC value represent
the best recognition performance.

In the following, we evaluated our proposed network through
comparisons to state-of-the-art CNNs-based approaches [1, 15, 29,
30]. The performance was measured on the RECOLA dataset [28],
which has been adopted for the AudioVisual Emotion recognition
Challenges (AV+EC) in 2015 [26] and 2016 [27]. We also evaluated
our proposed method on the AV+EC 2017 dataset [31].
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Fig. 3. Estimated valence graph of 5th and 8th subjects in develop-
ment sets in RECOLA dataset [26].
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Fig. 4. Estimated valence graph of 4th and 10th subjects in devel-
opment sets in AV+EC 2017 dataset [31].

Component-wise performance analysis We first evaluated the
performance gain of each components in our method on the RECOLA
dataset [28]. In order to analyze the effect of the proposed network
architecture, we analyzed the performance of each component (i.e.,
encoder-decoder and 3D-CNNs) in Table 1. By learning the spa-
tiotemporal attention using the encoder-decoder architecture, the
estimation performance improves 0.062 and 0.053 for CC and CCC
score compared than the performances using only 3D-CNNs which
shows the effectiveness of proposed spatiotemporal attention based
emotion recognition.

Visualization of attention maps To verify the effectiveness of the
attention to estimate dimensional emotions, we visualized the atten-
tion maps where model focused on parts of the face, while improv-
ing the emotion recognition performance. As shown in Fig. 5, the
proposed model effectively learn the important parts in the videos
frames, especially eyes and mouth. At different frames, the pro-
posed model captures different parts, since ConvLSTM deals with
temporal correspondence. As a result, proposed attention network
highlights relevant parts of emotion recognition and implicitly learn
to detect specific AUs in facial images.

Fig. 5. Visualization of spatiotemporal attention maps learned by the
proposed network in the RECOLA dataset [28]: Attention scores are
normalized by the spatial softmax. Red indicates higher weight of
the frame and blue indicates lower weight. Specifically, the areas
around eyes and mouth are considered to be important to estimate
emotion.

Comparison to other methods We then compared our method
with the state-of-the-art methods including CNN-based approaches
[1] and LSTM-based approaches [30] on the RECOLA dataset [28]
in Table 2. The results showed that the proposed method exhibits a
better recognition performance than conventional methods [1,15,29,
30].

In Table 3, we also compared our method with the RNN-based
approach [1] on AV+EC 2017 dataset [31], which includes 34 train-
ing and 14 development videos. The results have also shown that
the proposed method exhibits a better recognition performance com-
pared to conventional methods.

We visualized the valence scores predicted by proposed method
for three of the videos in the development set in Fig. 3 and Fig. 4.
The proposed models can detect the valence score especially on the
peak points by demonstrating the effectiveness of the proposed CNN
architecture.

4. CONCLUSION

We proposed dimensional emotion recognition framework that lever-
ages the spatiotemporal attention of video frames. Our method only
considered spatial appearance and temporal motion for the facial
video sequence simultaneously using 3D-CNNs. An extensive ex-
perimental analysis shows the benefits of our encoder-decoder atten-
tion network for dimensional emotion recognition, and state-of-the-
art recognition performances on both RECOLA and AV+EC 2017
dataset. As future work, we will study a dimensional emotion recog-
nition using multispectral database including RGB, depth, IR, and
FIR to improve the emotion recognition performance.
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