BI-RADS CLASSIFICATION OF BREAST CANCER: A NEW PRE-PROCESSING PIPELINE FOR DEEP MODELS TRAINING

CISUC

Goal

To classify mammograms from the InBreast database into the **BI-RADS** scale

Motivation

- Breast cancer remains the leading cause of death in women Worldwide
- Screening mammography has been shown to be an effective method for diagnosis of abnormalities in the breast and to increase the survival rate by detecting the cancer in its initial stage
- Manual analysis is time consuming, expensive, and subjective to variability and human error
- Deep learning based strategies have shown to provide nearhuman performance

Context

BI-RADS	Description
0	the exam is not conclusive
1	no findings
2	benign findings
3	probably benign findings
4	suspicious findings
5	high probability of malignancy
6	proved cancer

Acknowledgment

This article is a result of the project NORTE-01-0145-FEDER-000027, supported by Norte Portugal Regional Operational Programme (NORTE 2020), under the PORTUGAL 2020 Partnership Agreement, through the European Regional Development Fund (ERDF).

Inês Domingues^{1;2}, Pedro H. Abreu¹ and João Santos² ¹CISUC, Department of Informatics Engineering, University of Coimbra, Portugal

²CI-IPOP, IPO-Porto Research Center, Portugal

Our proposals

We propose two preprocessing techniques: 1. A new data augmentation technique that takes into consideration the anatomic soundness <u>Why</u>? Deep learning techniques perform better with a lot of training data

2. A pyramid of scales to be given as input to the model <u>Why</u>? Lesions visible in mammograms can have sizes ranging from 15 to 500mm2

Original

Experimental setting

Results

- Column 1: Input
- Column 2: Data augmentation
- proposed method
- Column 3: Imbalance
- Original proportion *versus* undersampling

input	augmentation
image	none
image	none
image	mirrored
image	mirrored
image	proposed
image	proposed
DoG	none
DoG	none
DoG	mirrored
DoG	mirrored
DoG	proposed
DoG	proposed

Conclusions

- The pyramid of scales has a more mild effect with
- improvements in accuracy of 3%

POPORTO

Original image *versus* pyramid of scales (DoG)

No data augmentation *versus* image mirroring *versus*

MAE MaxAcc balance 77.0(11.1 1.2(0.4)yes 0.5(0.1)70.4(5.8) no 69.1(7.0) 1.1(0.1)yes 0.5(0.0)70.9(6.6) no 0.7(0.1)81.9(4.9) yes 83.2(4.3) 0.4(0.0)no 73.5(16.4) 1.0(0.2)yes 70.5(2.3) 0.5(0.0)no 68.3(7.4)1.1(0.2)yes 0.6(0.1)71.2(3.8) no 0.7(0.1)76.0(4.2) yes **0.4**(0.0) **83.4**(3.6) no

Data augmentation technique improves the accuracy by more than 33% when compared with the results with no data augmentation and more than 32% when compared with augmenting the train dataset by mirroring the images