Deep Networks with Shape Priors for Nucleus Detection

ICIP 2018 - Athens, Greece

Mohammad Tofighi, Tiantong Guo, Jairam K.P. Vanamala, Vishal Monga

Department of Electrical Engineering Pennsylvania State University

Wednesday 10th October, 2018

Table of contents

Introduction

Cell Nuclei Detection Neural Networks CNN for Cell Nuclei Detection Challenges

Shape Priors with CNN

Network Structure Cost Function

Experimental Results

Dateset Performance Comparison

Conclusion

Medical Image Processing Applications

Cell Nucleus Detection and Challenges

- Morphological methods ¹
- Challenges:
 - Overlapping cells,
 - Different nucleus shapes
- Deep learning based methods are proposed ²
- Pros: Learned features can boost the performance
- Cons: Fail in challenging cases; naive learning of features
- Solution: Learn better! Guided by the expert domain knowledge

¹Y. Al-Kofahi *et al.*, IEEE TBME 2010 ²A. Cruz *et al.*, MICCAI 2013

Introduction to Neural Networks

- Deep learning models inspired by the biological neural networks.
- They have been used for several applications: ^{3 4}
 - Classification: image segmentation, object detection, speech recognition, ...
 - Regression: Image super-resolution, denoising, ...

³J. Long *et al.*, CVPR 2015

⁴Y. LeCun et al., Nature 2015

Introduction to Neural Networks

- One mostly used NN: Convolutional Neural Network (CNN)
- ► A mapping Y = f(X, Θ) is learned by minimizing the cost function E(f(X, Θ), G) between the output Y and the ground truth G
- Using a stochastic gradient descent method and an error back-propagation algorithm ⁵ ⁶

⁵D.E. Rumelhart *at al.*, Nature, 1986 ⁶Y. Lacun *at al.*, Neural Computation, 1989

Review: CNN/Deep Learning for Cell Nuclei Detection

 Recent works on cell detection based on CNN/Deep Learning technique: SC-CNN⁷, SR-CNN⁸ SSAE⁹, LIPSyM¹⁰

⁷Sirinukunwattana *et al.*, TMI 2016
 ⁸Xie *et al.*, MICCAI 2015
 ⁹Xu *et al.*, TMI 2016
 ¹⁰Kuse *et al.*, JPI 2011

Challenges in Cell Nuclei Detection

- Overlapping cell: false positive and false negative detections
- Varying shapes of the nuclei: decrease detection and segmentation accuracy

Building Informative Priors

Our Solution: Shape Prior Guided CNN

Proposed Method: SP-CNN Structure

Cost Function

- Suppose the shape set as $\mathbf{S} = \{S_i | i = 1, 2, \dots, n\}$
- CNN cost function

$$\Theta = \arg\min_{\Theta} \|f(\mathbf{x}; \Theta) - \mathbf{y}\|_2^2$$
(1)

Cost term of the shape priors

$$\sum_{i=1}^{n} \|(g_p(\hat{\mathbf{y}}) \odot \hat{\mathbf{x}}) * \mathcal{S}_i\|_2^2$$
(2)

Overall, the cost function of the SP-CNN is given as:

$$\boldsymbol{\Theta} = \arg\min_{\boldsymbol{\Theta}} \|f(\mathbf{x}; \boldsymbol{\Theta}) - \mathbf{y}\|_2^2 - \lambda \sum_{i=1}^n \|(g_p(\hat{\mathbf{y}}) \odot \hat{\mathbf{x}}) * \mathcal{S}_i\|_2^2$$
(3)

SP-CNN Visual Illustrations

Shape Priors for Convolutional Neural Networks (SP-CNN)

- Train CNN using the input image and the ground truth label
- ► Using the CNN output, put masks on each detected local maxima (done by maxpooling): g_p(ŷ)
- Extract raw edge image from the raw input image using simple Canny edge detection filter: x̂
- ► Element-wise multiplication: $(g_p(\mathbf{\hat{y}}) \odot \mathbf{\hat{x}}) \Rightarrow$ masked edge map
- Masks out the edges from x̂ that are surrounding the detected location in ŷ: delete non-cell edges
- Convolve masked edge map with each of the shapes in set S: shape prior information
- Add them up and feed it back to CNN

Dateset & Assessment Methods

• UW Dataset ¹¹: 100 H&E stained histology images of colorectal adenocarcinomas (~30k cells)

• PSU Dataset - EE & Department of Food Science: 120 Colonic Mucosa images (~26k cells)

• Test-Train split: UW (50 - 50, consistent with ¹¹), PSU (20 - 80). • For assessment Recall (R), Precision (P), and F1 Score are used: $P = \frac{TP}{TP+FP}$, $R = \frac{TP}{TP+FN}$, and $F_1 = \frac{2PR}{P+R}$

¹¹K. Sirinukunwattana et al. – TMI'16

Assessment Methods & Experimental Results

All the results are obtained with same assessment procedure:

UW Dataset	Precision	Recall	F1 score
SP-CNN	0.803	0.843	0.823
SC-CNN 15	0.781	0.823	0.802
CP-CNN ¹⁵	0.697	0.687	0.692
SR-CNN ¹³	0.783	0.804	0.793
SSAE ¹⁴	0.617	0.644	0.630
LIPSyM ¹⁵	0.725	0.517	0.604
CRImage ¹⁶	0.657	0.461	0.542
PSU Dataset	Precision	Recall	F1 score
SP-CNN	0.854	0.871	0.863
SC-CNN 15	0.821	0.830	0.825
SR-CNN 16	0.797	0.805	0.801
SSAE 17	0.665	0.634	0.649

Table: Nucleus detection results for dataset of SC-CNN 12

¹²Sirinukunwattana *et al.*, TMI 2016
 ¹³Xie *et al.*, TMI 2016
 ¹⁴Xu *et al.*, TMI 2016
 ¹⁵Kuse *et al.*, JPI 2011

¹⁶Yuan et al., Sci. Trans. Med. 2012

Precision-Recall Curve for Choosing the Optimal Threshold - UW Dataset

¹⁷Sirinukunwattana *et al.*, TMI 2016
 ¹⁸Xie *et al.*, MICCAI 2015
 ¹⁹Xu *et al.*, TMI 2016
 ²⁰Kuse *et al.*, JPI 2011

Precision-Recall Curve for Choosing the Optimal Threshold - PSU Dataset

Figure: SC-CNN ²¹, SR-CNN ²² SSAE ²³

²¹Sirinukunwattana *et al.*, TMI 2016
 ²²Xie *et al.*, MICCAI 2015
 ²³Xu *et al.*, TMI 2016

Example Results

(d) Detection by SP-CNN; F1-score = 0.843 (e) Detection by SC-CNN; F1-score = 0.801 (f) Detection by SR-CNN; F1-score = 0.784

Example Results

Groundtruth

Detection by SP-CNN; F1-score = 0.868

Detection by SC-CNN; F1-score = 0.815

Detection by SR-CNN; F1-score = 0.809

Conclusion

- Shape prior guided convolutional neural networks help improve the performance of cell nuclei detection.
- Future research will be focused on designing data adaptive learning shapes.

Thanks For Your Attention!

Back-propagation Analysis of SP-CNN

- Training a neural network with gradient descent requires the calculation of the gradient of the cost function.
- The cost function of SP-CNN is as follows:

$$E(\mathbf{x}; \boldsymbol{\Theta}) = \|f(\mathbf{x}; \boldsymbol{\Theta}) - \mathbf{y}\|_2^2 - \lambda \sum_{i=1}^n \|(g_p(\hat{\mathbf{y}}) \odot \hat{\mathbf{x}}) * \mathcal{S}_i\|_2^2 \quad (4)$$

- It has two terms: fidelity cost term and the cost term corresponding to the shape priors.
- Detection fidelity cost term is:

$$L = \|f(\mathbf{x}; \boldsymbol{\Theta}) - \mathbf{y}\|_2^2, \tag{5}$$

The cost term for shape priors is:

$$P = -\lambda \sum_{i=1}^{n} \|(g_p(\hat{\mathbf{y}}) \odot \hat{\mathbf{x}}) * \mathcal{S}_i\|_2^2.$$
(6)

Back-propagation for Fidelity Cost Term

For detection fidelity cost term the back-propagation is performed by:

• At iteration step *t*, weights are updated by:

$$\Theta^{t+1} = \Theta^t - \eta \frac{\partial L}{\partial \Theta^t} \tag{7}$$

where, η is learning rate for the stochastic gradient descent method and Θ^t is the values of weights at previous iteration.

- ► For simplicity, we focus on filters and assume that output image ŷ is of dimension N × N.
- ► For computation of the gradients of the weights at last layer:

$$\frac{\partial L}{\partial W^d} = -(\mathbf{y} - \hat{\mathbf{y}}) \cdot \frac{\partial \hat{\mathbf{y}}}{\partial W^d}$$
(8)

• $\frac{\partial \hat{\mathbf{y}}}{\partial W^d}$ is obtained according to ²⁴.

²⁴Y. LeCun et al., Proc. of the IEEE, 1998

Back-propagation for Shape Priors Cost Term

To carry the shape priors cost term into the Θ , we need to update Eq. (7) accordingly. Examining closely of the Eq. (6), we can re-write it as:

Updated Eq. (7) will be:

$$\Theta^{t+1} = \Theta^t - \eta \frac{\partial L}{\partial \Theta^t} - \eta \frac{\partial P}{\partial \Theta^t}.$$
(9)

- ► Since, our network parameter Θ consists of weights from *D* convolutional layers, following gradients are to be computed: $\frac{\partial P}{\partial \mathbf{W}_{m,n}^l}$, where l = 1, ..., D and \mathbf{W} is of dimension $k_1 \times k_2$ has *m* by *n* as the iterators.
- The equations for computing the gradients of weights at last layer are given by:

$$\frac{\partial P}{\partial \mathbf{W}_{m',n'}^{l}} = \sum_{i=0}^{N-k_1} \sum_{j=0}^{N-k_2} \frac{\partial P}{\partial x_{i,j}^{l}} \frac{\partial \mathbf{x}_{i,j}^{l}}{\partial \mathbf{W}_{m',n'}^{l}} = \sum_{i=0}^{N-k_1} \sum_{j=0}^{N-k_2} \delta_{i,j}^{l} \frac{\partial \mathbf{x}_{i,j}^{l}}{\partial \mathbf{W}_{m',n'}^{l}},$$
(10)

Back-propagation for Shape Priors Cost Term

where x^l_{i,j} is the convolved input vector at layer l plus the bias represented:

$$\mathbf{x}_{i,j}^{l} = \sum_{m} \sum_{n} \mathbf{W}_{m,n}^{l} \mathbf{o}_{i+m,j+n}^{l-1} + \mathbf{b}^{l},$$
(11)

and the output vector at layer l given by $\mathbf{o}_{i,j}^l = max(\mathbf{x}_{i,j}^l, 0)$.

• For
$$l = D$$
 and $\mathbf{x}^D = \mathbf{\hat{y}}$:

$$\delta_{i,j}^{D} = \frac{\partial P}{\partial \mathbf{x}_{i,j}^{D}} = -\sum_{i=1}^{n} g_{p}^{-1}(\mathbf{x}_{i,j}^{D} \odot \hat{\mathbf{x}}) * \operatorname{rot}_{180^{\circ}} \{S_{m,n}\}, \quad (12)$$

where $g_p^{-1}(\cdot)$ is assign the weights to where it comes from - the "winning unit" because other units in the previous layer's pooling blocks did not contribute to it hence all the other assigned values of zero. For the mathematical notations please refer to ²⁵ and ²⁶...

²⁵V. Dumoulin *et al.*, arXiv 2016

²⁶Y. LeCun et al., Proc. of the IEEE, 1998

Preparation of Training Data

Example Results

Groundtruth

Detection by SP-CNN; F1-score = 0.881

Detection by SC-CNN; F1-score = 0.838

Detection by SR-CNN; F1-score = 0.827

Example Results

Groundtruth

SC-CNN5

SR-CNN