

Introduction

- High Resolution & Contrast imaging requirement
 - Large FPA sensors are expensive
 - Effect of noise & bad pixel
 - Compressive Sensing \rightarrow Compressive Focal Plane Array Imaging
 - Digital Micromirror Devices (DMD)
- Compressive Sensing reconstruction algorithms are slow
 - Real-time application
 - Large matrix multiplication

Motivation

- Real-time applicable algorithms needed for reconstruction.
 - Alternating Direction Method of Multipliers (ADMM) for fast convergence
 - Requires large matrix inversion with ADMM
- Robustness against bad pixels.
- Fast implementation

Observation Model

• Multiple snapshots, each modulated using a DMD mask

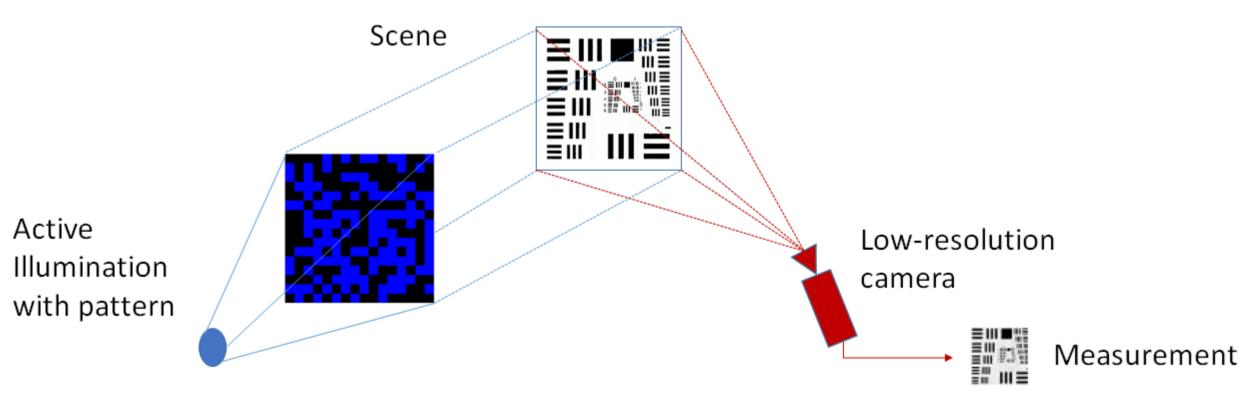


Figure 1: Observation model, modulation using DMD

• Linear Forward Model:

 $y = Ax + n \quad (1)$

• A: Bernoulli type block-diagonal sensing matrix.

 $y_j = A_j x^{(j)} + n_j$ (2)

- Full +1/0 sensing matrix
- X: scene, n: noise

A Matrix-Free Reconstruction Method for Compressive Focal Plane Array Imaging

Alper Güngör, Oğuzhan Fatih Kar, H. Emre Güven, ASELSAN Research Center, Ankara, TURKEY

Previous Approaches

- $\min_{x} TV(x) + \frac{\lambda}{2} \|Ax y\|_{2}^{2}$ (3)
- Optional positivity constraint, other sparsity bases. TVAL3 [1]
- Exploit block-sparse structure

Theory

- Approach:
 - Break block-sparse structure (reorder)
 - $A = [(D\Lambda_1)^T \cdots (D\Lambda_m)^T]^T$
 - D: Downsampling operator, Λ_i : Mask at snapshot *i*.

 $\min \alpha_1 TV(x) + \alpha_2 \|Fx\|_1$ (4) subject to $||D\Lambda_i x - y_i||_2 \le \epsilon_i$, $x[j] \ge 0, j \in 1, \cdots, N$

• ϵ_i^2 : noise energy in snapshot i

$$TV(x) = \sum_{j} \sqrt{(\nabla_{1} |x[j]|)^{2} + (\nabla_{2} |x[j]|)^{2}},$$
$$\|x\|_{p} = \left(\sum_{j} (|x[j]|)^{p}\right)^{\frac{1}{p}}$$

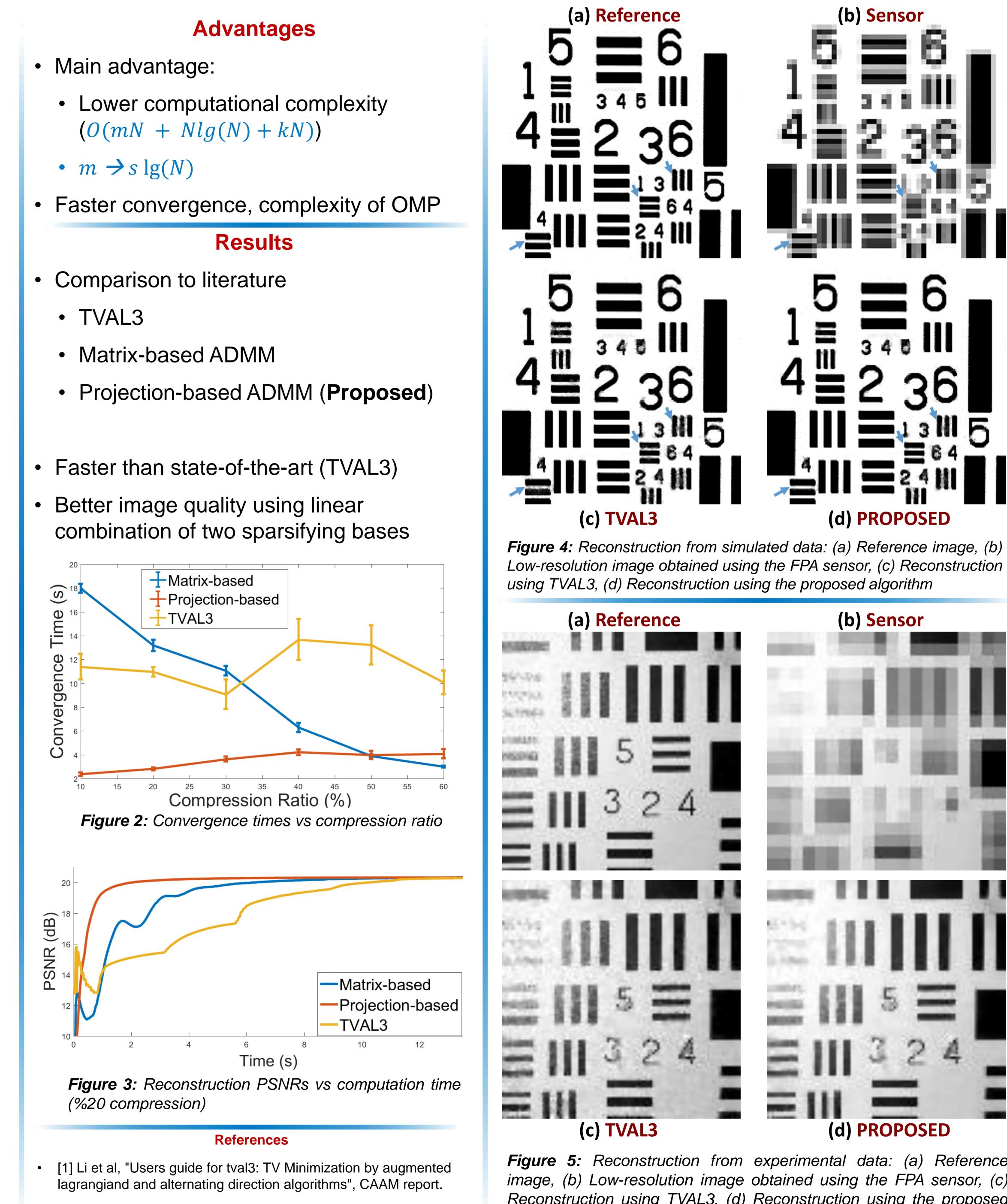
• N:pixel #

Proposed Method

An Alternating Direction Method of Multipliers (ADMM) was developed.

> $\min_{x,z} f_1(x) + f_2(z)$ (5) subject to $x = z^{(1)}, ..., x = z^{(2+m)}$

- Set $f_2(z) = \alpha_1 TV(z^{(1)}) + \alpha_2 \|Fz^{(2)}\|_1 +$ $\sum_{i} \left(\left\| D\Lambda_{i} z^{(2+i)} - y_{i} \right\|_{2} \le \epsilon_{i}, \right), f_{1}(x) = 0.$
- Solve 2 proximal mappings and m projections.
 - Total Variation \rightarrow Chambolle Projection [2]
 - L1-norm \rightarrow Soft Thresholding
 - Indicator Functions → Derived in the Paper



• [2] Chambolle, "An algorithm for total variation minimization and applications", J. Math. Imag. Vis.

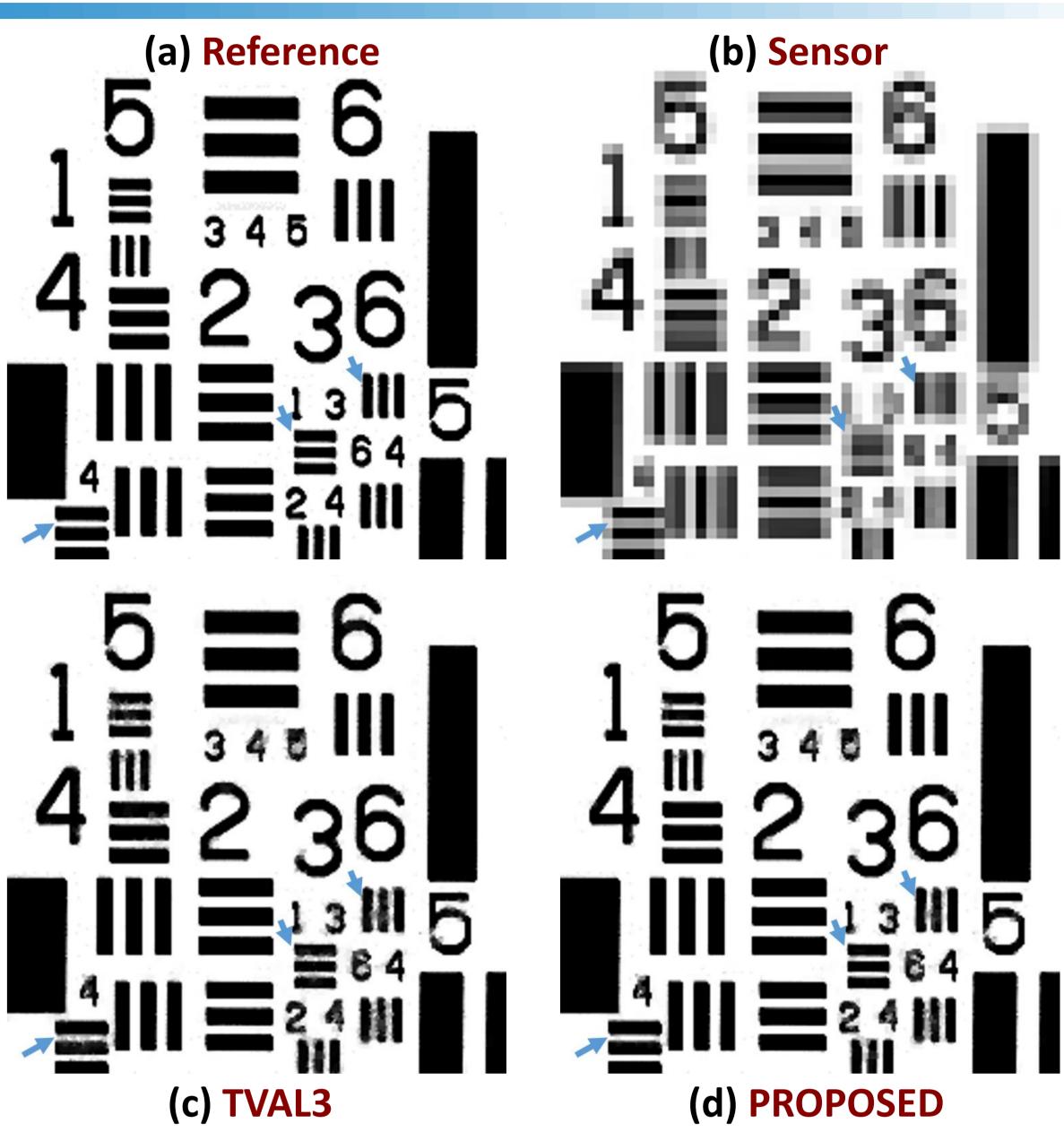


Figure 5: Reconstruction from experimental data: (a) Reference image, (b) Low-resolution image obtained using the FPA sensor, (c) Reconstruction using TVAL3, (d) Reconstruction using the proposed algorithm