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OBJECTIVE

Visualize and Study the Functional Sub-Network 
Connectivity Associated with PD using PET 
Parametric Images of Glucose Metabolism.

STEPS

1. DETEMINE DISEASE SPECIFIC NETWORK 

PATTERNS (IMAGING BIOMARKERS) – using PCA

2. VISUALIZE DISEASE PC NETWORK  (SUBNET) 

ASSOCIATED CONNECTIVITY USING GRAPH 

THEORETICAL CONCEPTS – using SICE

3. EVALUATE SUBNET BRAIN ORGANIZATION AND 

FUNCTION



METHODS: Combined SSM-PCA and SICE-GLASSO

Regional Network Analysis

SSM-PCA:  The Scaled Subprofile Model of Principal Component 

Analysis is a multivariate reduction technique that partitions group 

functional spatial covariance into orthogonal regionally weighted 

overlapping patterns corresponding to different sources of variation 

that may be normal, disease related, noise or outliers.

SICE-GLASSO: Sparse Inverse Covariance Estimation using the 

Graphical Lasso allows us to determine a sparse binary adjacency 

matrix indicating prominent topological organization of functional 

connectivity in brain networks.

FOCUSED: Apply GLASSO Estimation to SSM-PCA subnetwork data.

Application in PD: To visualize connectivity in Parkinson’s disease 

(a neurodegenerative disorder affecting movement and cognition.)

Software: MATLAB (Mathworks, Sherborn, MA), ScAnVP (http://www.feinsteinneuroscience.org/)

graphicalLasso.m , Xiaohui Chen 02/2012, UIUC, Brain Connectivity Toolbox (BCT)

http://www.feinsteinneuroscience.org/
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DATA PREPROCESSING

Row and Column Centering of Data Matrix

Log Transformation

D
Subject by 
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Matrix
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1. SSM-PCA
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1. SSM-PCA

❖ PCA is performed on the covariance matrix of the normalized and 

centered data D to derive a complete set of orthogonal Principal 

components PCk and corresponding subject scores Scorejk.

❖ The portion Djk of the subject j data that is attributed to a specific 

Principal Component PCk is equal to the PC times the subject 
Score.

❖ Prospective subjects can be tested by evaluating their expression 
scores as inner products of their data vector and the pre-derived 
PC pattern.

Software: ScAnVP (http://www.feinsteinneuroscience.org/)

Dj = Σk Djk (Whole Brain Data) (1)

Djk = Scorejk x PCk (Subnet Data) (2)

Scorejk = Dj
T · PCk (Subject Score) (3)

SCALED SUBPROFILE  MODEL  - PRINCIPAL  COMPONENT ANALYSIS



PC1 Pattern Map PC2 Pattern Map 

p=0.00004

p=0.54

DISEASE PATTERN

Prospective Group Expression Scores
PC1 discriminates Patients from ControlsPC1 PC2 



2. GLASSO-SICE
GRAPHICAL LASSO-SPARSE INVERSE COVARIANCE ESTIMATION

S =  Empirical covariance matrix,  Q=S−1, Inverse covariance matrix 

❖ Use algorithm—the graphical lasso* …to estimate sparse 
undirected graphical models through the use of L1 (lasso) 
regularization. Increase the variable ρ penalty to increase 
sparsity of  S −1.

❖ If the ijth component of S−1 is zero, then regions i and j are 
conditionally independent otherwise they are partially 
connected, i.e. directly functionally correlated.

❖ Maximize the penalized Gaussian log-likelihood of the data :

*JEROME FRIEDMAN et. al, Biostatistics (2008), 

Software: graphicalLasso.m , Xiaohui Chen 02/2012, UIUC

log det Q − tr(SQ) − ρ||Q||1, 

tr denotes the trace and ||Q||1 is the L1 norm—the 

sum of the absolute values of the elements of S−1 . 



❖ Determine the binary 0/1 adjacency matrix A from Q at 
maximum sparsity for fully connected graphs.

❖Visualize whole brain and subnetwork connectivity.

❖Examine Graph Parameters of  matrix A including Sparsity and 
Centrality Measures (Degree, Eigenvector, Betweeness, 
Clustering) 

❖Compare Centrality vectors with PC vectors derived using  ROI 
based SSM-PCA of the subject data and assess primary hubs.

Software: Brain Connectivity Toolbox (BCT) & ScAnVP in-house

2. GLASSO-SICE
APPLICATION
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GLASSO SICE WHOLE BRAIN ADJACENCY MATRIX
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EC (PERRON) VECTOR– ABS. SSM PC1 CORELLATION
(33 PD patients – 95 ROIs)        

483 Edges, 89.2% sparsity,10.8% density

Pearson’s Corr PD33abs, Vec EC00097:  r=0.84,  r2=0.71,  p<0.001    (ROI vector)

ROI Map correlation (r=0.89, r2=0.79, p<0.001)   (voxel)

SICE  EC
Perron Vector 
map
ρ =0.00097

SSM PC1 Map
Absolute Values 

EC:  Eigenvector Centrality
(Primary PC of Adjacency Matrix)

Z=0 X=0

Z=0

Z=0 X=0

Z=0

PC1: Primary PC of Covariance Matrix

r2=0.79



Max 
1.54

Min  -
2.63

483 Edges 

Whole Brain 95 ROI 3D Plot.
Diameter determined by EC weight
Color determined by PD33 SSM PC1 weight

SSM-PC
Region
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89.2%
Sparsity



Whole Brain 95 ROI Connectivity

Diameter determined by EC
Color determined by PD33 SSM PC1 
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Covariance Matrix Adjacency Matrix
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GLASSO SICE SSM PC1 SUBNET ADJACENCY 
PD33, 60 ROI Connected Subnetwork

ρ =0.001, 80.6%, 343 Edges (92.2% of whole brain)
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60 ROI SSM PC1 Subnet Connectivity
SUBNET OF 60 ROIS IS FULLY CONNECTED. 

Three dimensional plot depicts 257 maximally weighted bootstrapped edges.

FRONTAL DISCONTINUITY IN 95 ROI CONFIGURATION

Sparsity
92.2% (95 ROIS)
80.6% (60 ROIS)

343 Edges

Max
1.23

Min
-2.09

Diameter:  EC
Color: PC1 



Pons Putamen/Pallidum

60 ROI SSM PC1 SUBNET



Whole Brain and Subnet Connectivity

SSM_PC1 
Subnet
60 ROIS
343 Edges

Whole 
Brain 
Network
95 ROIS
483 Edges

SSM_PC2 
Subnet
80 ROIS
349 Edges



CONCLUSION

SSM-PCA and SICE are different methods of reducing 

covariance data to essential elements.

PCA is a simpler and more direct approach for identifying 

disease specific patterns (imaging biomarkers) and providing 

corresponding subject scores of disease expression.

SICE provides greater insight into the more prominent 

underlying topographical structure of the data but does not 

directly distinguish between disease related and normal 

connectivity.

A new more focused approach of applying SICE to PCA derived 

disease specific partitions of the data may enhance visualization 

and comprehension of functional associations in 

neurodegenerative diseases of the brain. 
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