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Our work:

• The goal: Implementation and experimental testing of a new  

extended image quantization system which consists of:

➢ the Outer Plexiform Layer (OPL) Filter of the retina [3]

➢ the Leaky Integrate-and-Fire (LIF) Quantizer [4]

• Characteristics of our system:

✓Dynamic

Parametrized by the time

✓Bio-Inspired

Inspired by the mammalian visual system

Encoding is performed by a Leaky Integrate-and-Fire (LIF)  neural model



Why do we need new encoding schemes? 

• The amount of media that need to be stored and transmitted 
increases dramatically

• The latest encoders use similar quantization paradigm and their 
performance has reached a certain limit.

• There is a high need of finding efficient ways of encoding making use 
of novel properties. 

• Our work suggests a dynamic encoding approach unlike existing 
schemes that use a static one.



Our Inspiration – The visual system

• The retina:

➢ Outer plexiform layer (OPL)

➢ Inner plexiform layer (IPL)

➢ Ganglionic layer (GL)

• Ganglion cells:

➢ Neurons responsible for the visual data  
compression reacting to the brightness of light

➢ Behave according to the Leaky Integrate-and-Fire  
(LIF) neural model



The LIF model:

• 𝐼 𝑡 = 𝐼𝑅 + 𝐼𝐶 =
𝑢(𝑡)

𝑅
+ 𝐶

𝑑𝑢

𝑑𝑡
,  we set 𝑅𝐶 = 𝜏𝑚

• 𝜏𝑚
𝑑𝑢

𝑑𝑡
= −𝑢 𝑡 + 𝑅𝐼0 ⇒

𝑢 𝑡 = 𝑅𝐼0 1 − 𝑒𝑥𝑝 −
𝑡−𝑡𝑘

𝜏𝑚
,   

where 𝑡𝑘 is the time of a spike occurrence.

• A spike occurs when: 𝑢 𝑡𝑘+1 = 𝜃 = 𝑅𝐼0 1 − 𝑒𝑥𝑝 −
𝑡𝑘+1−𝑡𝑘

𝜏𝑚



The LIF behavior

• Computation of the Integration delay :  𝑑 𝑢 = ൝
∞ , 𝑢 < 𝜃

ℎ 𝑢; 𝜃 = 𝜏𝑚𝑙𝑛
𝑢

𝑢−𝜃
, 𝑢 ≥ 𝜃

• Computation of the inter-spike delay : 𝑑′ 𝑢 = 𝑑 𝑢 + Δ𝑎𝑏𝑠
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potential u
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Our LIF Quantizer – The encoder 

• Multiply I with R

Get action 
potential u

• 𝑑 𝑢 = ൝
∞ , 𝑢 < 𝜃

ℎ 𝑢; 𝜃 = 𝜏𝑚𝑙𝑛
𝑢

𝑢−𝜃
, 𝑢 ≥ 𝜃

• Parameters threshold θ, observation 
time , membrane potential circuit 
resistance R

Compute integration 
delay 

• Add refractory 

• 𝑑′ 𝑢 = 𝑑 𝑢 + Δ𝑎𝑏𝑠

Compute spike delay
• Divide observation 

window by the inter-spike 
delay 

Get number of spikes 
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Our LIF Quantizer - The decoder

• Divide observation 
window by the 
number of spikes

Get an 
approximation of 
the inter-spike 
delay

• Use of inverse function of h

• 𝑢 = ൞

0 , ሚ𝑑 𝑢 = ∞

ℎ−1 ሚ𝑑 𝑢 ; 𝜃 =
𝜃

1−𝑒𝑥𝑝
෩𝑑 𝑢

𝜏𝑚

, ሚ𝑑 𝑢 < ∞

Get an estimation of 
the action potential u

• Divide estimated u by R

Get estimation of 
input intensity



The refractory period

• Refractory period works as an additive noise.

• In our experiments the refractory period follows a half Gaussian 
distribution  

• After each spike a positive random refractory period of a specified 
variance is being generated and added to the inter-spike delay d(t).



The LIF characteristic function

• Input intensities are mapped into 
the estimated quantized intensities 
computed by our LIF quantizer

• The presence of the refractory 
period introduces non-linearity
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The MSE in function of the threshold

• The presence of a refractory period 
introduces overload noise

• This yields the presence of an 
optimal threshold value which 
minimizes the MSE. 



The OPL filtering

• First layer of the retina

• Receives the visual stimulus𝑓 (𝑥,𝑡) and produces the 
equivalent electrical signal using a spatiotemporal  
transformation

• Representation as a weighted Difference of Gaussians 
(WDoG)  kernel:

𝜑 (𝑥, 𝑡)= 𝑎 (𝑡) 𝐺𝑐(𝑥) − 𝑏(𝑡)𝐺𝑠(𝑥)

• 𝑎(𝑡) , 𝑏(𝑡) : time-varying weights which tune the shape of
the DoG

• 𝜎𝑠 , 𝜎𝑐 : standard deviations of the center and the surround
Gaussians respectively with 𝜎𝑐 < 𝜎𝑠



Extending our System using the OPL

• The retina-inspired filtering, which is a 
frame, is applied to temporally constant 
input signals resulting in high redundancy:

𝐴(𝑥, 𝑡)= 𝜑 (𝑥, 𝑡)∗ 𝑓 (𝑥)

• In our extended system:

1. OPL generates subbands removing 
spatial redundancies

2. Then we quantize each subband
generated by the OPL using our LIF
Quantizer .

• The final output is the reconstruction using 
the subbands that have been encoded using 
the LIF.



Finding the good subband generation

• Three different rates of subband generation

➢Uniform

➢Denser in the band-pass middle region of the OPL

➢Sparser in the band-pass middle region of the OPL

• We stop at observation time 𝑡𝑜𝑏𝑠 = 90𝑚𝑠. 
Later subbands are very redundant

• Subband generation for the non-Uniform  
cases is done experimentally without any  
specific function as it is only a first  
experimental approach



Results on the OPL (1)

Original Image Uniform generation

PSNR= 17.0814 dB
SSIM= 0.5204
Entropy= 3.316 bpp

Denser middle

PSNR= 15.1268 dB
SSIM= 0.4635
Entropy= 4.704 bpp

Sparser middle

PSNR= 24.7936 dB
SSIM= 0.8187
Entropy= 3.1 bpp



Results on the OPL (2)

Dense middle

PSNR = 19.7819 dB  
SSIM = 0.7204
Entropy = 4.592 bpp

Uniform generation

PSNR = 14.7250 dB  
SSIM = 0.4843
Entropy = 4.769 bpp

Sparse middle

PSNR = 20.4562 dB  
SSIM = 0.7384
Entropy = 6.611 bpp

Original Image



Conclusions
• The LIF Quantizer is a very promising  innovative method for dynamic data 

encoding unlike the static existing methods.

• The refractory period introduces overload noise which yields the existence of an 
optimal threshold value θ that minimizes the MSE.

• Reduction of spatial redundancy can be achieved using the OPL filtering. This is an  
extended more realistic model which better represents the retinal structure.

• Our first experimental attempt to find the good subband generation showed that
the optimal choice depends on the image characteristics.

• A crucial next step on this study  is to develop a function for finding the best 
subband generation.
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Thank you for 
your attention!

Questions?


