Human Visual System (HVS) Response Modelling Numerical Framework by MaxPol Convolution Kernels Natural Image Frequency Falloff Modelling No-Reference (NR) Focus Quality Assessment (FQA) Experiment-I: Synthetic Blur Imaging Experiment-II: Natural Blur Imaging Experiment-III: Natural Blur Imaging

Image Sharpness Metric Based on MaxPol Convolution Kernels

Mahdi S. Hosseini and Konstantinos N. Plataniotis

mahdi.hosseini@mail.utoronto.ca

kostas@ece.utoronto.ca

Multimedia Laboratory The Edward S. Rogers Dept. of Electrical and Computer Engineering University of Toronto, Ontario, Canada

2018 IEEE International Conference on Image Processing (ICIP) Paper#2842, Session: MQ.L3: Visual Quality Assessment I Monday, 17:40-18:00, October 8, 2018, Athens, Greece

Hosseini and Plataniotis

October 2018

Sharpness Metric via MaxPol Convolution Kernels 1 / 18

Objective and Contribution

Main objective: Propose a computational model to Human Visual

System (HVS) response to assess natural image blur

- ① Synthesize visual sensitivity response by a convolutional filter
- **2** Use HVS convolution filter to perceive image blur features
- 3 Implement algorithmic workflow to quantize image blur

Human Visual System (HVS) Response Modelling Numerical Framework by MaxPol Convolution Kernels Natural Image Frequency Falloff Modelling No-Reference (NR) Focus Quality Assessment (FQA) Experiment-I: Synthetic Blur Imaging Experiment-II: Natural Blur Imaging Experiment-III: Natural Blur Imaging

- Human Visual System (HVS) Response Modelling
- Numerical Framework by MaxPol Convolution Kernels
- Natural Image Frequency Falloff Modelling
- No-Reference (NR) Focus Quality Assessment (FQA)
- Experiment-I: Synthetic Blur Imaging
- Experiment-II: Natural Blur Imaging
- Experiment-III: Whole Slide Imaging in Digital Pathology

Frequency Response of Natural Images

- Natural images follow a decay response $\propto 1/\omega^\gamma$
- ω is spatial frequency, $\gamma>1$ is energy tuning factor
- Amplitude response of high-frequency is lower than low-frequency

Visual Sensitivity in Human Visual System (HVS)

- HVS analyzes visual inputs in frequency domain
- Energy of all amplitude frequencies are perceives equally in HVS
- HVS introduces a **sensitivity response** to compensate the energy-loss of high frequency information
- Neurones in visual cortex automatically tune the frequency amplitudes to balance out the falloff of high-frequency range¹

Modelling HVS as a Linear Operator

- Visual sensitivity response boosts high frequencies to balance out wide spectrum of input visuals
- Model HVS as a linear convolution process

 $\bar{I} \approx I_{\mathsf{Input}} * h_{\mathsf{HVS}}$

- 1 \overline{I} Output image signal perceived by human visual cortex
- 2 IInput Input image signal
- $\mathbf{3}$ h_{HVS} Convolution filter emulating visual sensitivity response
- **Goal:** synthesize a convolution filter $h_{HVS}(x)$ to boost high-frequency amplitudes such that

 $h_{\mathsf{falloff}}(x) * h_{\mathsf{HVS}}(x) = \delta(x)$

- $h_{\mathsf{falloff}}(x)$ simulates falloff frequency of input image $|\hat{I}_{\mathsf{2D}}(\omega_r)|$
- What is the main merit? If all frequencies are balanced, the features corresponding to different edge types can be visually compared in a meaningful way

Hosseini and Plataniotis

Design of HVS Convolution Filter

- HVS filter response should satisfy $\hat{h}_{\rm HVS}(\omega) = \hat{h}_{\rm falloff}(\omega)^{-1}$
- Define HVS as a linear combination of even-derivative operators

$$h_{\text{HVS}}(x) \equiv c_1 d_2(x) + c_2 d_4(x) + \ldots + c_N d_{2N}(x)$$

where $d_{2n}(x) = d^{2n}/dx^{2n}$

- Fourier transform of even derivatives is $\mathcal{F}\{d_{2n}(x)\} = (j\omega)^{2n}$
- So, Fourier transform of HVS filter gives

$$\hat{h}_{\text{HVS}}(\omega) \equiv \sum_{n=1}^{N} c_n \hat{d}_{2n}(\omega) = \sum_{n=1}^{N} (-1)^n c_n \omega^{2n}$$

 Unknown coefficients c_n are inferred by fitting the model into the inverse falloff response

$$\sum_{n=1}^{N} (-1)^n c_n \omega^{2n} \equiv \hat{h}_{\mathsf{falloff}}(\omega)^{-1}$$

Numerical Approximation via MaxPol Convolution Kernels

- HVS attenuates frequencies close to Nyquist band
- Once coefficients c_n are obtained, we design lowpass filter

$$\hat{h}_{\mathsf{HVS}}(\omega) = \begin{cases} \sum_{n=1}^{N} (-1)^n c_n \omega^{2n}, & 0 \le \omega \le \omega_c \\ 0, & \omega \ge \omega_c \end{cases}$$

- ω_c is cutoff frequency and is tuned for optimum performance
- MaxPol^2 library is used for numerical implementation of lowpass derivative filters ω^{2n}

²[MaxPol Package] [HosseiniPlataniotis-IEEE2017] [HosseiniPlataniotis-SIAM2017]

Hosseini and Plataniotis

October 2018

Sharpness Metric via MaxPol Convolution Kernels 8 / 18

Natural Image Frequency Falloff Modeling

The falloff frequency $\hat{h}_{\rm falloff}(\omega)$ is related to imaging application

Synthetic Imaging Blur [HosseiniPlataniotis-ICIP2018]

• $h_{\mathsf{falloff}}(x) = 1/\omega^p$, blur is dominant in $p \in \{1,3\}$

Natural Imaging Blur [HosseiniPlataniotis-arXive2018]

• Using generalized Gaussian (GG) as a frequency falloff distribution

•
$$h_{\mathsf{falloff}}(x) = c \exp{-|\frac{x}{A(\beta,\alpha)}|^{\beta}}$$
, Scale $\alpha = 1.7$, Shape $\beta = 1.4$

Microscopic Out-of-Focus Blur [HosseiniPlataniotis-2018]

• Encode out-of-focus blur in digital microscopy

•
$$h_{\mathsf{falloff}}(x) = \left| C \int_0^1 J_0(k \frac{\mathsf{NA}}{n} x \rho) e^{-\frac{1}{2}ik\rho^2 z(\frac{\mathsf{NA}}{n})^2} \rho d\rho \right|^2$$

Hosseini and Plataniotis

No-Reference Sharpness Metric Development

Images can now be convolved with HVS filter to identify balanced features for NR-FQA metric development

Algorithm for Sharpness Scoring

 Exclude background pixels Decompose image using HVS filter $F_x = I * h_{HVS}, \quad F_y = I * h_{HVS}^T$ 3 Activate features by ReLu $R(x) = \max(x, 0)$ 4 Construct sparse feature map in $\ell_{1/2}$ -norm $M_{\rm HVS} = \left[|R(F_x)|^{1/2} + |R(F_y)|^{1/2} \right]^2.$ **5** Keep a subset Ω of feature pixels $\overline{M}_{HVS} = sort_d(M_{HVS})_k, \ k \in \Omega,$ 6 Measure the *m*th central moment $\mu_m = \mathbb{E}\left[(\overline{M}_{HVS} - \mu_0)^m \right]$ Record the final score Sharpness Score = $-\log \mu_m$

Hosseini and Plataniotis

October 2018

Sharpness Metric via MaxPol Convolution Kernels 10 / 18

Experiment-I: Synthetic Blur Imaging

- Images are synthetically blurred for quality assessment (IQA)
- Images are subjectively evaluated for mean opinion score (MOS)
- Database examples: LIVE, CSIQ, TID2008, and TID2013
- Terms of evaluation
 - 1 Pearson linear correlation coefficient (PLCC)
 - 2 Spearman rank order correlation (SRCC)

	Method	4000	Measu	IN LINE	GIQ	TIDER	* TID2013
	S ₃	2012	PLCC SRCC	0.9434 0.9436	0.9175 0.9058	0.8555 0.8480	$0.8816 \\ 0.8609$
	MLV	2014	PLCC SRCC	0.9590 0.9566	0.9069 0.9246	$0.8584 \\ 0.8546$	0.8830 0.8785
	Kang's CNN	2014	PLCC SRCC	0.9625 0.9831	0.7743 0.7806	0.8803 0.8496	$0.9308 \\ 0.9215$
	ARISMC	2015	PLCC SRCC	$0.9590 \\ 0.9561$	0.9481 0.9314	$0.8544 \\ 0.8681$	0.8979 0.9015
	GPC	2015	PLCC SRCC	0.9242 0.8369	0.9018 0.8641	0.8684 0.8729	0.8665 0.8668
	SPARISH	2016	PLCC SRCC	0.9595 0.9593	0.9380 0.9139	0.8900 0.8836	0.9020 0.8940
	RISE	2017	PLCC SRCC	0.9620 0.9493	0.9463 0.9279	0.9289 0.9218	0.9419 0.9338
	Yu's CNN	2017	PLCC SRCC	0.9730 0.9646	$0.9416 \\ 0.9253$	0.9374 0.9189	0.9221 0.9135
>	MaxPol (ICIP2018)	2018	PLCC SRCC	0.9735 0.9688	0.9657 0.9481	0.9359 0.9394	0.9412 0.9448
	HVS-MaxPol-1 (arXiv2018)	2018	PLCC SRCC	0.9877 0.9722	0.9506 0.9209	$0.8811 \\ 0.8813$	0.8977 0.8930
	HVS-MaxPol-2 (arXiv2018)	2018	PLCC SRCC	0.9789 0.9737	0.9507 0.9216	0.8964 0.8956	$0.8980 \\ 0.9014$

Rank (2) dark-green

Overall Performance

- Developed metrics based on MaxPol meet both
 - 1 High correlation accuracy
 - 2 Fast speed calculation

Experiment-II: FocusPath Natural Blur Database

- Out-of-focus is common problem in whole slide imaging (WSI)
- FocusPath³ is 864 digital pathology image patches from 9 WSIs
- FocusPath images are scanned by Huron TissueScope LE1.2
- 16 Z-stack scans collected from each slide to cover all focus levels

³download from https://sites.google.com/view/focuspathuoft/home

Hosseini and Plataniotis

October 2018

Sharpness Metric via MaxPol Convolution Kernels 13 / 18

Experiment-II: Natural Blur Imaging

- Images are natural blurred for quality assessment (IQA)
 - 1 BID (586 images)
 - 2 CID2013 (474 images)
 - **3** FocusPath (864 images)

Method	4015	Measure	BID	C102013	FocusPath	Overall.P
S3	2012	PLCC	0.4271	0.6863	0.7906	0.6542
-		SRCC	0.4253	0.6460	0.7914	0.6441
MIN	2014	PLCC	0.3643	0.6890	0.3201	0.4243
		SRCC	0.3236	0.6206	0.3296	0.3993
Kane's CNN	2014	PLCC	-	-		
		SRCC	-	-	-	-
ARISMO	2015	PLCC	0.1841	0.5523	0.2263	0.2936
. Handle	2010	SRCC	0.1742	0.4719	0.3043	0.3059
GPC	2015	PLCC	0.4409	0.6520	0.7499	0.6317
ere -		SRCC	0.4361	0.6080	0.7811	0.6334
CDADICU	2016	PLCC	0.3460	0.6775	0.3459	0.4275
ərakıən		SRCC	0.3413	0.6607	0.3566	0.4267
DICE	2017	PLCC	0.6017	0.7934	0.6509	0.6710
RIDE	2017	SRCC	0.5839	0.7690	0.6566	0.6621
Vels CNN	2017	PLCC	-	-	-	-
TU'S CININ		SRCC	-	-	-	-
MD-1 (ICID2018)	2018	PLCC	0.3235	0.5674	0.7056	0.5552
MaxPol (ICIP2018)		SRCC	0.2713	0.5310	0.7191	0.5364
HVC Man Dal 1 (arVir/2018)	2018	PLCC	0.4112	0.7741	0.8212	0.6847
rivo-maxroi-1 (arXiv2018)		SRCC	0.4363	0.7081	0.8144	0.6730
HVC MD-1.2 (Vi-2018)	2018	PLCC	0.4659	0.7329	0.8538	0.7059
n v 5-maxroi-2 (arXiv2018)		SRCC	0.4475	0.6102	0.8574	0.6717

Experiment-III: Whole Slide Imaging in Digital Pathology

- Tissue slides in digital microscopy are mapped to obtain best focus level for scanning
- Sharpness assessment can be used in quality control of WSI scan

Hosseini and Plataniotis

October 2018

Sharpness Metric via MaxPol Convolution Kernels 15 / 18

Experiment-III: Whole Slide Imaging in Digital Pathology

- Image patches from different WSI are shown bellow
- Image patches are sorted based on different focus levels (bins)
- Notice the robustness of focus levels across different slides

Concluding remarks

- We implemented a no-reference image sharpness assessment based on HVS response design
- We implemented convolutional kernel simulating HVS response
- Visual sensitivity response is modelled by linear combination of high order derivatives
- Numerical implementation of derivative provided by MaxPol library
- Sharpness quality metric development based on MaxPol is
 - Highly accurate
 - 2 High speed calculation with minimum computation complexity
- Diverse imaging applications in
 - Synthetic blur
 - 2 Natural blur
 - 3 Microscopic out-of-focus

Human Visual System (HVS) Response Modelling Numerical Framework by MaxPol Convolution Kernels Natural Image Frequency Falloff Modelling No-Reference (NR) Focus Quality Assessment (FQA) Experiment-I: Synthetic Blur Imaging Experiment-II: Natural Blur Imaging Experiment-III: Whole Slide Imaging in Digital Pathology

Thank You!

Hosseini and Plataniotis

October 2018

Sharpness Metric via MaxPol Convolution Kernels 18 / 18