Efficient Deep Convolutional Neural Networks Accelerator without Multiplication and Retraining

Weihong Xu 1,2 , Xiaohu You 2 , Chuan Zhang 1,2

 $^1 {\rm Lab}$ of Efficient Architectures for Digital-communication and Signal-processing (LEADS) $^2 {\rm National}$ Mobile Communications Research Laboratory, Southeast University, Nanjing, China

Outline

- 1. Motivation
- 2. Related Work and Problem Formulation
- 3. Proposed Quantization and Hardware Co-design
- 4. Results and Analysis
- 5. Conclusion

Outline

1. Motivation

2. Related Work and Problem Formulation

- 3. Proposed Quantization and Hardware Co-design
- 4. Results and Analysis
- 5. Conclusion

Motivation

Convolutional Neural Networks

- **Convolution**: feature extraction by convolving various filters over input image
- Fully-connected: linear transform over input features
- **Pooling and Non-linear**: perform down sampling and non-linear function

Major Challenges

- Computation-intensive: convolution takes up over 95% of ovarall complexity
 - $\mathcal{O}(N^2 K^2)$ complexity per image \longrightarrow Prohibitive complexity
 - Floating point MAC is expensive \longrightarrow Low energy efficiency
- **Memory-intensive**: FC layers contribute 90% parameters
 - Densely connected networks \longrightarrow Millions of weights
 - Massive data movement \longrightarrow Bandwidth limitation

Outline

1. Motivation

2. Related Work and Problem Formulation

- 3. Proposed Quantization and Hardware Co-design
- 4. Results and Analysis
- 5. Conclusion

Low-precision Neural Networks

• Binarized Neural Networks

- $-\,$ Binary weights $\{-1,+1\}$ with scaling factor α
- Activation: 32-bit float
- α is determined by L_1 -norm of weights
- Accuracy degradation: 19% on AlexNet

¹[Rastegari, Ordonez, Redmon, et al., ECCV 2016]

Low-precision Neural Networks

• Ternary Weight Nets

- Ternary weights $\{-1, 0, +1\}$ with scaling factor α
- Activation: 32-bit float
- Adding zero value increases expressive abilities of weights
- Accuracy degradation: 3.7% on AlexNet

• Objective of BNNs and TWNs

- Minimize distance between full precision weights W and the ternary weights W^t using scaling factor α :

$$\alpha^*, \mathbf{W}^{t*} = \underset{\alpha, \mathbf{W}^t}{\arg\min} ||\mathbf{W} - \alpha \mathbf{W}^t||^2$$

¹[Li, Zhang, and Liu, arXiv 2016]

• Distribution of weights in 5th layer of VGGNet

• Distribution of weights in 15th layer of VGGNet

- Near normal distribution
- Deeper layers tend to have smaller weights

• An intuitive perspective

• An intuitive perspective

- LogNet
 - Weights: 4-bit, Activation: 32-bit
 - No scaling factor $\alpha \longrightarrow$ Hardware friendly
 - Substitute MAC with Shift and Add
 - Accuracy degradation: 4.9% on AlexNet without Retraining
 - Accuracy degradation: 4.6% on VGG16 with Retraining

¹[Lee, Miyashita, Chai, et al., ICASSP 2017]

• Incremental Network Quantization

- Incremental retraining on Log domain
- Weights: 5-bit, Activation: 4-bit
- Accuracy degradation: 1.16% on VGG16

¹[Zhou, Yao, Guo, et al., ICLR 2017]

Problem Formulation

Problem Formulation

• Retraining is expensive!

Problem Formulation

• How to skip retraining?

Outline

1. Motivation

2. Related Work and Problem Formulation

3. Proposed Quantization and Hardware Co-design

4. Results and Analysis

5. Conclusion

Non-uniform Quantization

• More Log Bits \neq Less Quantization Error

Non-uniform Quantization

Unable to quantize

• Non-linear Quantization with Codebook

$$\hat{w}_i = \sum_{n=1}^{N} \phi_n \left[\mathrm{idx}_{\mathrm{i,n}} \right]$$

- $\operatorname{idx}_{i,n}$: ith segment of \hat{w}_i
- N codebooks
- Codebook Structure

$$\phi_n = \left[0, 2^{-1}, 2^{-2}, \dots, 2^{-(2^{B_n} - 1)}\right]$$

- Quantize weights to codebook index idx
- Only process codebook index during inference

- Example: To quantize value 0.75
 - Log domain quantization: $2^{round(\log_2(0.75))} = 2^{-1} = 0.5$
 - Increasing bits don't help!

- Example: To quantize value 0.75
 - Log domain quantization: $2^{round(\log_2(0.75))} = 2^{-1} = 0.5$
 - Increasing bits doesn't help!
- Reduce quantization error with $N = 2, B_1 = 1, B_2 = 2$
 - Codebook $\phi_1 = \{0, 2^{-1}\}, \phi_2 = \{0, 2^{-1}, 2^{-2}, 2^{-3}\}$

• Quantized value: $\hat{w}_i = 1, 10 = 2^{-1} + 2^{-2} = 0.75$

Figure: Index value distribution of FC layer in VGGNet16

- Codebook index values tend to be centered within a range
- More bits are required without optimization
 - 3 bits for ϕ_1 , 4 bits for ϕ_2 for this case

• Offset β_n to cover wider range

$$\phi_n = \left[0, 2^{-1-\beta_n}, 2^{-2-\beta_n}, ..., 2^{-(2^{B_n}-1)-\beta_n}\right],$$

• Offset β_n to cover wider range

$$\phi_n = \left[0, 2^{-1-\beta_n}, 2^{-2-\beta_n}, ..., 2^{-(2^{B_n}-1)-\beta_n}\right],$$

 $-\,$ Reduce to 3 bits for ϕ_1 , 3 bits for ϕ_2

• MSE criterion to determine optimal offset β_n :

$$\beta_n = \operatorname*{arg\,min}_{\beta_n} \frac{1}{I} \sum_{i=0}^{I-1} ||\hat{w}_i - w_i||^2,$$

- Weights in the same layer share the same offsets
- Only require N offset values for a layer
- Increase quantization resolution

Efficient MAC Operation

• MAC based on shift and add

$$y = \hat{w}_i * x_i + b = \sum_{n=1}^{N} \phi_n [idx_{i,n}] * x_i + b.$$

- Codebook elements are all power of 2 or zero
- Shift and add instead of bulky multiplier
- One multiplication = N shift and N-1 addition

Efficient MAC Operation

• Normalized energy and area cost comparison for single MAC unit for $N = 2, B_1 = B_2 = 3 \longrightarrow (3, 3)$

	Power	Area
Shift-add MAC	1×	$1 \times$
Fixed-point MAC	$7.3 \times$	$14.5 \times$

Hardware Architecture

- Huffman Coding \longrightarrow Lossless compression
- Two-level Systolic Array → Maximize data reuse

Two-level Systolic Array

- 14×14 PE array
- Row Stationary (RS) dataflow \longrightarrow Minimize data movement

1. Weights Broadcast

2. Data Input (16-bit fixed)

3. Data Output (Activation: 16-bit fixed)

Processing Element

- Each PE contains 5 Cells
- Cell implements shift-add MAC operation
- 1-D systolic convolution \longrightarrow Higher throughput

Dataflow of PE

- Weights stay
- Input data move systolically

Dataflow of PE

- Weights stay
- Input data move systolically

Dataflow of PE

- Weights stay
- Input data move systolically

Outline

1. Motivation

2. Related Work and Problem Formulation

3. Proposed Quantization and Hardware Co-design

4. Results and Analysis

5. Conclusion

Test on AlexNet

• Codebook size N = 2 without **Retraining**

Model	Codebook	Top-1/top-5 Accuracy	Degradation
	Baseline	56.55%/79.09%	-/-
	(3, 2)	41.76%/66.22%	-14.79%/-12.87%
AlexNet	(4, 2)	48.36%/72.33%	-8.19%/-6.76%
	(3 , 3)	54.98%/77.89%	-1.57%/-1.20%
	(4, 4)	55.45%/78.64%	-1.10%/-0.45%

 $[\dagger]$ Top-1/top-5 error are tested with single center crop.

Test on AlexNet

• Quantization MSE comparison

Validation on ImageNet

- Quantize pretrained AlexNet, VGGNet16, ResNet34 model from Pytorch
- Codebook size N = 2 with $B_1 = B_2 = 3$

Model	Method	Bit-width	Degradation	Retraining
AlexNet	Baseline	32	-/-	No
	Proposed	(3, 3)	-1.57%/-1.20%	No
	LogNet	5	-/-3.70%	No
VGGNet-16	Baseline	32	-/-	No
	Proposed	(3, 3)	-2.23%/-1.95%	No
	Fixed-point	16	-3.58%/-2.49%	No
ResNet-18	Baseline	32	-/-	No
	Proposed	(3 , 3)	-1.97%/-1.17%	No
	ShiftCNN	(4, 4)	-3.21%/-2.05%	No
	TWNs	2	-2.56%/-1.80%	Yes

[†] Top-1/top-5 error are tested with single center crop.

[*] Degradation is taken from original papers.

Model Compression

Implementation Results

Design	Qiu2016	Zhang2016	This work
Diatform	Zynq	Virtex-7	Virtex-7
Platiorm	XC7Z045	VX690t	VX690t
Clock(MHz)	150	150	150
Quantization	16-bit fixed	16-bit fixed	(3 , 3)
LUT	186,251	$\approx 300,000$	107995
FF	127,653	$\approx 300,000$	117795
DSP	2240	2833	0
BRAM	1024	1248	1279
Throughput (GOP/s)	187.8	636.0	238.2

¹[Qiu, Wang, Yao, et al., ISFPGA 2016] ²[Zhang, Fang, Zhou, et al., ICCAD 2016]

Outline

- 1. Motivation
- 2. Related Work and Problem Formulation
- 3. Proposed Quantization and Hardware Co-design
- 4. Results and Analysis
- 5. Conclusion

Conclusion

• A framework to implement low-precision CNNs

- Non-uniform quantization with multiple codebooks and offset
- Retraining-free quantization approaches
- Multiplier-free shift-add convolution

• Efficient hardware architecture

- Two-level systolic to maximize data reuse
- Huffman compression to reduce memory bandwidth
- 1-D systolic PEs to obtain high throughput

Reference

- 1. M. Rastegari, V. Ordonez, J. Redmon, *et al.*, "Xnor-net: Imagenet classification using binary convolutional neural networks," in *ECCV*, 2016
- 2. F. Li, B. Zhang, and B. Liu, "Ternary weight networks," arXiv preprint arXiv:1605.04711, 2016
- 3. E. H. Lee, D. Miyashita, E. Chai, *et al.*, "Lognet: Energy-efficient neural networks using logarithmic computation," in *ICASSP*, 2017
- 4. A. Zhou, A. Yao, Y. Guo, *et al.*, "Incremental network quantization: Towards lossless cnns with low-precision weights," in *ICLR*, 2017
- 5. J. Qiu, J. Wang, S. Yao, *et al.*, "Going deeper with embedded fpga platform for convolutional neural network," in *ISFPGA*, 2016
- 6. C. Zhang, Z. Fang, P. Zhou, *et al.*, "Caffeine: Towards uniformed representation and acceleration for deep convolutional neural networks," in *ICCAD*, 2016
- D. A. Gudovskiy and L. Rigazio, "Shiftcnn: Generalized low-precision architecture for inference of convolutional neural networks," arXiv preprint arXiv:1706.02393, 2017

Thanks for Your Attention!

Q & A