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Motivation

Image Segmentation Game NLP
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Convolutional Neural Networks

• Convolution: feature extraction by convolving various filters over input
image

• Fully-connected: linear transform over input features

• Pooling and Non-linear: perform down sampling and non-linear func-
tion
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Major Challenges

• Computation-intensive: convolution takes up over 95% of ovarall com-
plexity

− O(N2K2) complexity per image −→ Prohibitive complexity

− Floating point MAC is expensive −→ Low energy efficiency

• Memory-intensive: FC layers contribute 90% parameters

− Densely connected networks −→ Millions of weights

− Massive data movement −→ Bandwidth limitation
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Low-precision Neural Networks

• Binarized Neural Networks
− Binary weights {−1,+1} with scaling factor α

− Activation: 32-bit float

− α is determined by L1-norm of weights

− Accuracy degradation: 19% on AlexNet8 Rastegari et al.
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Fig. 2: This figure illustrates the procedure explained in section 3.2 for approximating a convo-
lution using binary operations.

the optimal solutions can be achieved from equation 2 as follow

C∗ = sign(Y) = sign(X)� sign(W) = H∗ �B∗ (9)

Since |Xi|, |Wi| are independent, knowing that Yi = XiWi then,
E [|Yi|] = E [|Xi||Wi|] = E [|Xi|]E [|Wi|] therefore,

γ∗ =

∑ |Yi|
n

=

∑ |Xi||Wi|
n

≈
(
1

n
‖X‖`1

)(
1

n
‖W‖`1

)
= β∗α∗ (10)

Binary Convolution: Convolving weight filter W ∈ Rc×w×h (wherewin � w, hin �
h) with the input tensor I ∈ Rc×win×hin requires computing the scaling factor β for all
possible sub-tensors in I with same size as W. Two of these sub-tensors are illustrated
in figure 2 (second row) by X1 and X2. Due to overlaps between subtensors, comput-
ing β for all possible sub-tensors leads to a large number of redundant computations.
To overcome this redundancy, first, we compute a matrix A =

∑ |I:,:,i|
c , which is the

average over absolute values of the elements in the input I across the channel. Then
we convolve A with a 2D filter k ∈ Rw×h, K = A ∗ k, where ∀ij kij = 1

w×h . K
contains scaling factors β for all sub-tensors in the input I. Kij corresponds to β for
a sub-tensor centered at the location ij (across width and height). This procedure is
shown in the third row of figure 2. Once we obtained the scaling factor α for the weight
and β for all sub-tensors in I (denoted by K), we can approximate the convolution
between input I and weight filter W mainly using binary operations:

I ∗W ≈ (sign(I)~ sign(W))�Kα (11)

where ~ indicates a convolutional operation using XNOR and bitcount operations. This
is illustrated in the last row in figure 2. Note that the number of non-binary operations
is very small compared to binary operations.

1[Rastegari, Ordonez, Redmon, et al., ECCV 2016]
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Low-precision Neural Networks

• Ternary Weight Nets

− Ternary weights {−1, 0,+1} with scaling factor α

− Activation: 32-bit float

− Adding zero value increases expressive abilities of weights

− Accuracy degradation: 3.7% on AlexNet

• Objective of BNNs and TWNs

− Minimize distance between full precision weights W and the ternary weights
Wt using scaling factor α:

α∗,Wt∗ = argmin
α,Wt

||W − αWt||2

1[Li, Zhang, and Liu, arXiv 2016]
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Non-Linear Quantization

• Distribution of weights in 5th layer of VGGNet
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Non-Linear Quantization

• Distribution of weights in 15th layer of VGGNet
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− Near normal distribution

− Deeper layers tend to have smaller weights
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Non-Linear Quantization

• An intuitive perspective
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Non-Linear Quantization

• An intuitive perspective

Inefficient More efficient

13 of 51



Non-Linear Quantization
• LogNet
− Weights: 4-bit, Activation: 32-bit

− No scaling factor α −→ Hardware friendly

− Substitute MAC with Shift and Add

− Accuracy degradation: 4.9% on AlexNet without Retraining

− Accuracy degradation: 4.6% on VGG16 with Retraining

1[Lee, Miyashita, Chai, et al., ICASSP 2017]
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Non-Linear Quantization
• Incremental Network Quantization
− Incremental retraining on Log domain

− Weights: 5-bit, Activation: 4-bit

− Accuracy degradation: 1.16% on VGG16
Published as a conference paper at ICLR 2017
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Figure 2: Result illustrations. First row: results from the 1st iteration of the proposed three oper-
ations. The top left cube illustrates weight partition operation generating two disjoint groups, the
middle image illustrates the quantization operation on the first weight group (green cells), and the
top right cube illustrates the re-training operation on the second weight group (light blue cells). Sec-
ond row: results from the 2nd, 3rd and 4th iterations of the INQ. In the figure, the accumulated
portion of the weights which have been quantized undergoes from 50%→75%→87.5%→100%.

handling of the strategy for suppressing resulting quantization loss in model accuracy. We are par-
tially inspired by the latest progress in network pruning (Han et al., 2015; Guo et al., 2016). In these
methods, the accuracy loss from removing less important network weights of a pre-trained neural
network model could be well compensated by following re-training steps. Therefore, we conjec-
ture that the nature of changing network weight importance is critical to achieve lossless network
quantization.

Base on this assumption, we present INQ which incorporates three interdependent operations:
weight partition, group-wise quantization and re-training. Weight partition is to divide the weights
in each layer of a pre-trained full-precision CNN model into two disjoint groups which play comple-
mentary roles in our INQ. The weights in the first group are responsible for forming a low-precision
base for the original model, thus they are quantized by using Equation (4). The weights in the second
group adapt to compensate for the loss in model accuracy, thus they are the ones to be re-trained.
Once the first run of the quantization and re-training operations is finished, all the three operations
are further conducted on the second weight group in an iterative manner, until all the weights are
converted to be either powers of two or zero, acting as an incremental network quantization and
accuracy enhancement procedure. As a result, accuracy loss under low-precision CNN quantization
can be well suppressed by our INQ. Illustrative results at iterative steps of our INQ are provided in
Figure 2.

For the lth layer, weight partition can be defined as

A
(1)
l ∪A

(2)
l = {Wl(i, j)}, and A

(1)
l ∩A

(2)
l = ∅, (5)

where A
(1)
l denotes the first weight group that needs to be quantized, and A2 denotes the other

weight group that needs to be re-trained. We leave the strategies for group partition to be chosen
in the experiment section. Here, we define a binary matrix Tl to help distinguish above two
categories of weights. That is, Tl(i, j) = 0 means Wl(i, j) ∈ A

(1)
l , and Tl(i, j) = 1 means

Wl(i, j) ∈ A
(2)
l .

5

1[Zhou, Yao, Guo, et al., ICLR 2017]
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Problem Formulation

Quantize Weights by log2(w)

Accuracy Satisfied?

Trained Model

Restore Accuracy by Retraining

No

Yes

Low-precision Model

All Weights Quantized?

Yes

No
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Problem Formulation

Quantize Weights by log2(w)

Accuracy Satisfied?

Trained Model

Restore Accuracy by Retraining

No

Yes

Low-precision Model

All Weights Quantized?

Yes

No

• Retraining is expensive!
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Problem Formulation

Quantize Weights by log2(w)

Accuracy Satisfied?

Trained Model

Restore Accuracy by Retraining

No

Yes

Low-precision Model

All Weights Quantized?

Yes

No

• How to skip retraining?
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Non-uniform Quantization

• More Log Bits 6= Less Quantization Error
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Non-uniform Quantization

Unable to quantize
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Proposed Non-uniform Quantization

• Non-linear Quantization with Codebook

ŵi =

N∑

n=1

φn [idxi,n]

− idxi,n: ith segment of ŵi

− N codebooks

• Codebook Structure

φn =
[
0, 2−1, 2−2, ..., 2−(2Bn−1)

]

• Quantize weights to codebook index idx

• Only process codebook index during inference
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Proposed Non-uniform Quantization

• Example: To quantize value 0.75

− Log domain quantization: 2round(log2(0.75)) = 2−1 = 0.5

− Increasing bits don’t help!
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Proposed Non-uniform Quantization

• Example: To quantize value 0.75

− Log domain quantization: 2round(log2(0.75)) = 2−1 = 0.5

− Increasing bits doesn’t help!

• Reduce quantization error with N = 2, B1 = 1, B2 = 2

− Codebook φ1 = {0, 2−1}, φ2 = {0, 2−1, 2−2, 2−3}

𝜙1 =  0,  2−1 ,   𝜙2 =  0,  2−1,  2−2,  2−3 ,

1, 10

• Quantized value: ŵi = 1, 10 = 2−1 + 2−2 = 0.75
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Proposed Non-uniform Quantization

Index Value

Figure: Index value distribution of FC layer in VGGNet16

• Codebook index values tend to be centered within a range

• More bits are required without optimization
− 3 bits for φ1, 4 bits for φ2 for this case
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Proposed Non-uniform Quantization

• Offset βn to cover wider range

φn =
[
0, 2−1−βn , 2−2−βn , ..., 2−(2Bn−1)−βn

]
,

Index Value

β1 = 0 β2 = 2
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Proposed Non-uniform Quantization

• Offset βn to cover wider range

φn =
[
0, 2−1−βn , 2−2−βn , ..., 2−(2Bn−1)−βn

]
,

Index Value

− Reduce to 3 bits for φ1, 3 bits for φ2
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Proposed Non-uniform Quantization

• MSE criterion to determine optimal offset βn:

βn = argmin
βn

1

I

I−1∑

i=0

||ŵi − wi||2,

• Weights in the same layer share the same offsets

• Only require N offset values for a layer

• Increase quantization resolution
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Efficient MAC Operation

• MAC based on shift and add

y = ŵi ∗ xi + b =

N∑

n=1

φn [idxi,n] ∗ xi + b.

• Codebook elements are all power of 2 or zero

• Shift and add instead of bulky multiplier

• One multiplication = N shift and N − 1 addition
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Efficient MAC Operation

• Normalized energy and area cost comparison for single MAC unit for
N = 2, B1 = B2 = 3 −→ (3, 3)

Power Area

Shift-add MAC 1× 1×
Fixed-point MAC 7.3× 14.5×
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Hardware Architecture

• Huffman Coding −→ Lossless compression

• Two-level Systolic Array −→ Maximize data reuse
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Two-level Systolic Array

• 14× 14 PE array
• Row Stationary (RS) dataflow −→ Minimize data movement
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Dataflow of Systolic Array

1. Weights Broadcast
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Dataflow of Systolic Array

2. Data Input (16-bit fixed)
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Dataflow of Systolic Array

3. Data Output (Activation: 16-bit fixed)
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Dataflow of Systolic Array
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Processing Element

• Each PE contains 5 Cells

• Cell implements shift-add MAC operation

• 1-D systolic convolution −→ Higher throughput
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Dataflow of PE

• Weights stay

• Input data move systolically
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Dataflow of PE

• Weights stay

• Input data move systolically
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Dataflow of PE

• Weights stay

• Input data move systolically
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Test on AlexNet

• Codebook size N = 2 without Retraining

Model Codebook Top-1/top-5 Accuracy Degradation

AlexNet

Baseline 56.55%/79.09% −/−
(3,2) 41.76%/66.22% −14.79%/− 12.87%

(4,2) 48.36%/72.33% −8.19%/− 6.76%

(3,3) 54.98%/77.89% −1.57%/− 1.20%

(4,4) 55.45%/78.64% −1.10%/− 0.45%

[†] Top-1/top-5 error are tested with single center crop.
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Test on AlexNet
• Quantization MSE comparison
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Validation on ImageNet

• Quantize pretrained AlexNet, VGGNet16, ResNet34 model from Pytorch

• Codebook size N = 2 with B1 = B2 = 3

Model Method Bit-width Degradation Retraining

AlexNet

Baseline 32 −/− No

Proposed (3,3) −1.57%/− 1.20% No

LogNet 5 −/− 3.70% No

VGGNet-16

Baseline 32 −/− No

Proposed (3,3) −2.23%/− 1.95% No

Fixed-point 16 −3.58%/− 2.49% No

ResNet-18

Baseline 32 −/− No

Proposed (3,3) −1.97%/− 1.17% No

ShiftCNN (4, 4) −3.21%/− 2.05% No

TWNs 2 −2.56%/− 1.80% Yes

[†] Top-1/top-5 error are tested with single center crop.
[∗] Degradation is taken from original papers.
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Model Compression

AlexNet VGGNet-16 ResNet-34
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Implementation Results

Design Qiu2016 Zhang2016 This work

Platform
Zynq Virtex-7 Virtex-7

XC7Z045 VX690t VX690t

Clock(MHz) 150 150 150

Quantization 16-bit fixed 16-bit fixed (3,3)

LUT 186, 251 ≈ 300, 000 107995

FF 127, 653 ≈ 300, 000 117795

DSP 2240 2833 0

BRAM 1024 1248 1279

Throughput (GOP/s) 187.8 636.0 238.2

1[Qiu, Wang, Yao, et al., ISFPGA 2016]
2[Zhang, Fang, Zhou, et al., ICCAD 2016]
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Conclusion

• A framework to implement low-precision CNNs

− Non-uniform quantization with multiple codebooks and offset

− Retraining-free quantization approaches

− Multiplier-free shift-add convolution

• Efficient hardware architecture

− Two-level systolic to maximize data reuse

− Huffman compression to reduce memory bandwidth

− 1-D systolic PEs to obtain high throughput

48 of 51



Reference
1. M. Rastegari, V. Ordonez, J. Redmon, et al., “Xnor-net: Imagenet classi-

fication using binary convolutional neural networks,” in ECCV, 2016

2. F. Li, B. Zhang, and B. Liu, “Ternary weight networks,” arXiv preprint
arXiv:1605.04711, 2016

3. E. H. Lee, D. Miyashita, E. Chai, et al., “Lognet: Energy-efficient neural
networks using logarithmic computation,” in ICASSP, 2017

4. A. Zhou, A. Yao, Y. Guo, et al., “Incremental network quantization: To-
wards lossless cnns with low-precision weights,” in ICLR, 2017

5. J. Qiu, J. Wang, S. Yao, et al., “Going deeper with embedded fpga platform
for convolutional neural network,” in ISFPGA, 2016

6. C. Zhang, Z. Fang, P. Zhou, et al., “Caffeine: Towards uniformed represen-
tation and acceleration for deep convolutional neural networks,” in ICCAD,
2016

7. D. A. Gudovskiy and L. Rigazio, “Shiftcnn: Generalized low-precision ar-
chitecture for inference of convolutional neural networks,” arXiv preprint
arXiv:1706.02393, 2017

49 of 51



Thanks for Your Attention!



Q & A


	Motivation
	Related Work and Problem Formulation
	Proposed Quantization and Hardware Co-design
	Results and Analysis
	Conclusion

