

INTRODUCTION

Fault detection for the vehicle braking and steering systems is an important task to ensure the security of freight trains. For a long time, it has been performed by the skilled workers, which has many drawbacks such as low detection probability and poor efficiency. This paper proposes a novel unified framework for fault detection of the freight train images based on convolutional neural network (CNN) under complex environment.

- \succ The multi region proposal networks (MRPN) with a set of prior bounding boxes are introduced to achieve high quality fault proposal generation.
- \triangleright A linear non-maximum suppression (NMS) is used to retain the most suitable anchor while removing redundant boxes.
- ► A powerful multi-level region-of-interest (RoI) pooling is proposed for proposal classification and accurate detection.

The experiments indicate that the proposed framework can achieve high performance on four fault benchmarks, substantially outperforming the state-of-the-art methods.

Methods	Cut-out cock handle			Dust collector			Fastening bolts			Bogie block key			Detection
	CDR/%	MDR/%	FDR/%	CDR/%	MDR/%	FDR/%	CDR/%	MDR/%	FDR/%	CDR/%	MDR/%	FDR/%	speed /s
Cascade detector(LBP)	92.12	7.88	15.29	98.12	1.88	8.82	96.79	3.21	4.73	97.89	2.11	1.31	0.036
HOG+Adaboost+SVM	97.41	2.59	9.41	99.53	0.47	2.59	98.58	1.42	2.89	99.1	0.90	2.14	0.049
FAMRF+EHF	98.71	1.29	5.41	98.94	1.06	2.82	99.11	0.89	6.41	99.24	0.76	1.52	0.725
SSD(VGG16)	99.88	0.12	23.06	100	0	26.71	97.69	2.31	0.05	98.07	1.93	0	0.153
R-FCN(ResNet-50)	99.17	0.83	2.59	100	0	19.41	99.89	0.11	0.05	96.41	3.59	0	0.177
+Soft NMS	99.88	0.12	29.88	100	0	26.82	99.74	0.26	0	64.45	35.55	0.03	0.179
Faster-RCNN(ZF)	98.82	1.18	4.00	100	0	14.94	99.42	0.58	0.05	98.86	1.14	0	0.073
Faster RCNN(VGGM)	98.82	1.18	7.41	100	0	13.53	99.79	0.21	0.05	97.45	2.55	0	0.079
Faster RCNN(VGG16)	99.06	0.94	1.41	100	0	3.65	99.95	0.05	0	95.76	4.24	0.10	0.238
+Soft NMS	99.17	0.83	0.82	100	0	4.12	99.95	0.05	0.05	77.98	22.02	0	0.243
Our method	99.18	0.82	0.47	100	0	0.35	100	0	0	98.76	1.24	0	0.244

•Detection results of different databases

UNIFIED FRAMEWORK FOR FAULT DETECTION OF FREIGHT TRAIN IMAGES UNDER COMPLEX ENVIRONMENT

Yang Zhang^a, Kai Lin^b, Huiming Zhang^a, Yanwen Guo^{a,c*} and Guodong Sun^b ^a National Key Laboratory for Novel Software Technology, Nanjing University, China ^b School of Mechanical Engineering, Hubei University of Technology, China ^c Science and Technology on Information Systems Engineering Laboratory, China *Corresponding author: ywguo@nju.edu.cn

•*Multi region proposal generation*

To search for fault region proposals, a network is slid over two feature maps (Conv4_3 and Conv5_3) in the VGG16 model. \blacktriangleright A 5×5 convolution is applied to extract local feature over a 2×2 max pooling layer employed on Conv4_3 feature maps. \triangleright A 3×3 convolution is used to extract local feature over Conv5_3 feature maps at each sliding position. •*Multi-level fault detection network*

To better utilize the multi-level convolutional features and enrich the differentiate information of each anchor, we perform multi-level RoI pooling over the Conv4_3 and Conv5_3 feature maps. We apply concatenation on each feature and encode the concatenated feature with 512×1×1 convolutional layer to combine the multi-level pooled features and match the first fully-connected layer of the VGG16 network.

PERFORMANCE

METHOD

•*Results of railway equipment detection*

CONCLUSION

In this paper, we present a novel unified framework for fault detection of freight train images of the vehicle braking and steering system with a powerful deep learning method in an end-toend manner. The proposed framework consists of a MRPN with a set of characteristic prior anchors for high quality fault proposal generation and a powerful multi-level fault detection network for proposal classification and accurate localization. Specially, a linear-NMS method is applied to effectively remove redundant boxes. Experiments on four benchmarks show that the proposed method can achieve high performance with a fast detection speed over 4 fps (including all steps), substantially outperforming the previous methods.

ACKNOWLEDGEMENT

This work was supported in part by the NSF of Jiangsu Province under Grant BK20150016, the NSFC under Grants 61772257, 51775177 and the Fundamental Research Funds for the Central Universities 020214380034/4-3, 020214380042.