

LO-REGULARIZED HYBRID GRADIENT SPARSITY PRIORS FOR ROBUST SINGLE-IMAGE BLIND DEBLURRING

Ryan Wen Liu¹, Wei Yin¹, Shengwu Xiong², Silong Peng³

wenliu@whut.edu.cn

¹School of Navigation, Wuhan University of Technology
²School of Computer Science and Technology, Wuhan University of Technology
³Institute of Automation, Chinese Academy of Sciences

Problem

Image Formation Process

Camera Noise n

Bind Deblurring Problem

Non-Blind Deblurring

Blind Deblurring

ACM Trans. Graph., 2008.

Key Challenge: Ill-Posedness

Noise *n*

Related Work – Deblurring Framework

□ One-Step Blind Deblurring

Two-Step Blind Deblurring

<u>Step 1:</u> Blur Kernel Estimation; <u>Step 2:</u> Non-Blind Deconvolution

Robust Blur Kernel Estimation

Image degradation model : $B = L * k + \epsilon$

Robust Blur Kernel Estimation

Numerical Optimization Algorithm

k-Estimation

$$k_{t+1} = \min_{k} \left\{ \frac{1}{2} \|\nabla L_{t} * k - \nabla B\|_{2}^{2} + \gamma \|k\|_{2}^{2} \right\}$$

∇ L-Estimation

$$\nabla L_{t+1} = \min_{\nabla L} \left\{ \frac{1}{2} \left\| \nabla L * k_{t+1} - \nabla B \right\|_2^2 + \lambda \Phi \left(\nabla L, \Delta L \right) \right\}$$

Algorithm 1 Robust Blur Kernel Estimation 1: Input: Blurred image $B, \tau = 1.618, \gamma = 5 \times 10^{-2},$ $\eta_1 = \eta_2 = 10^{-3}$, and $M_{\text{max}} = 15$. 2: Initialize: $k_0 = \text{uniform}, \nabla L_0 = \nabla B$ and t = 0. 3: while (not converged and $t \leq T_{\text{max}}$) do // Step 1 : Blur Kernel Estimation k_{t+1} Update k_{t+1} according to (3). 4: // Step 2 : Image Gradient Estimation ∇L_{t+1} $\nabla L_{t,0} \leftarrow \nabla L_t$. 5: for s = 0 to S_{max} do 6: Update $\nabla L_{t,s+1}$ according to (7). 7: Update Y_{s+1} and Z_{s+1} according to (8) and (9). 8: $\xi_{s+1} = \xi_s - \tau \beta_1 \left(Y_{s+1} - \nabla L_{t,s+1} \right).$ 9: $\varphi_{s+1} = \varphi_s - \tau \beta_2 \left(Z_{s+1} - \Delta L_{t,s+1} \right).$ 10: end for 11: $\nabla L_{t+1} \leftarrow \nabla L_{t,S_{\max}}$. 12: 13: end while 14: Output: blur kernel k.

TV-regularized Variational Model for Non-Blind Deconvolution

$$\min_{L} \left\{ \|L * k - B\|_{1} + \mu \|\nabla L\|_{1} \right\}$$

Experiments

Experiments on Synthetical Blurred Images

Fig. 1. Quantitative evaluation (left: PSNR, right: SSIM) on the benchmark dataset by [25] for different deblurring methods, i.e., Fergus [22], Hirsch [23], Krishnan [8], Shan [17], Whyte [24], Pan&Su [11], Pan [9] and our method.

Experiments

Fig. 2. Comparison with state-of-the-art deblurring methods on a synthetic image of size 800×800 . Our estimated (*uni-form*) blur kernel of size 145×145 is visually illustrated in the bottom-left panel.

Experiments on Realistic Images

Fig. 3. Blind deblurring of three realistic natural images with large-scale blur kernels. The sizes of the estimated blur kernels from top to bottom are 135×135 , 101×101 and 95×95 , respectively. (The images are best viewed in full-screen mode.)

Experiments on Realistic Images

Fig. 4. Blind deblurring of two different realistic images. The sizes of the estimated blur kernels from top to bottom are 23×23 and 95×95 , respectively.

□Introduce the L0-regularized hybrid gradient sparsity priors for robustly estimate blur kernels, The hybrid sparsity priors were able to preserve the gradient sparsity and salient edges, assisting in stabilizing the blur kernel estimation.

The outlier-suppressing TVL1 model was proposed to guarantee high-quality non-blind image deblurring.

Future Work

□Non-uniform image Deblurring (Pixels are

blurred differently)

Thank you for your attention!