

Introduction

- we design a NN to extract singing melody.
- model.

- (lower-number) and unresolved (higher-number) harmonics, respectively.
- transient errors.

A HYBRID NEURAL NETWORK BASED ON THE DUPLEX MODEL OF PITCH PERCEPTION FOR SINGING MELODY EXTRACTION Hsin Chou, Ming-Tso Chen, and Tai-Shih Chi, National Chiao Tung University, Hsinchu, Taiwan

Table 1. Melody extraction evaluations in terms of VR, VFA, RPA, RCA and OA using iKala dataset. All scores are displayed in %. Results from the spectral and the temporal models inspired NNs are also listed in the bottom two rows.

	VR	VFA	RPA	RCA	OA
Proposed	86.14	14.04	79.98	81.54	81.28
HPSS+Prop.	83.42	13.92	74.43	75.97	78.28
MCDNN [16]	85.85	15.05	77.88	79.60	80.22
Melodia [25]	82.02	26.71	75.99	78.36	72.80
Spec. Model	85.44	15.51	76.40	78.22	79.07
Temp. Model	83.17	27.43	76.61	78.47	75.27

Table 2. Melody extraction evaluations in terms of VR, VFA, RPA, RCA and OA using MIR-1k dataset. All scores are displayed in %. Results from the spectral and the temporal models inspired NNs are also listed in the bottom two rows.

Proposed HPSS+Prop. MCDNN [16] Melodia [25] Spec. Model Temp. Model

- melody extraction.
- the MIR-1k dataset.

Result

VR	VFA	RPA	RCA	OA
82.73	16.14	72.23	75.38	75.64
75.35	12.37	64.29	67.72	71.12
78.36	14.25	65.21	68.30	71.22
85.10	30.80	72.95	75.74	69.61
83.63	21.31	68.81	72.16	71.70
81.57	26.76	67.87	71.71	69.44
	VR 82.73 75.35 78.36 85.10 83.63 81.57	VRVFA82.7316.1475.3512.3778.3614.2585.1030.8083.6321.3181.5726.76	VRVFARPA82.7316.1472.2375.3512.3764.2978.3614.2565.2185.1030.8072.9583.6321.3168.8181.5726.7667.87	VRVFARPARCA82.7316.1472.2375.3875.3512.3764.2967.7278.3614.2565.2168.3085.1030.8072.9575.7483.6321.3168.8172.1681.5726.7667.8771.71

Conclusion

• Inspired by the duplex (or unity) model of pitch perception, we built up a hybrid neural network, including a 1-kernel CNN and a DNN, for

• Experiment results show that the temporal-model inspired DNN does provide complementary information to the spectral-model inspired CNN when extracting singing melody.

• The proposed hybrid NN produces higher OA scores than the compared DNN-based method and non-DNN method using both the iKala and