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Introduction

I Recently in radar systems waveform design in spectrally
dense environment [1] has aroused noticeable interest

I Solution methods exist for the problem (see e.g. [2], [3])
but they are computationally inefficient

I When radar system operates at GHz level radar code
dimension becomes large, need for computationally
efficient solution methods

I Here we develop new computationally efficient method to
design transmitter waveform in spectrally dense
environment

I New method is based on ADMM algorithm [4] alongside
Majorization-Minimization step [5]
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Problem formulation
I Similarly to [3], denote transmitted fast-time radar code

vector by c and fast-time observation signal by v:

c = (c[1], c[2], ..., c[N])T ,v = αc+n, c,v ∈ CN , α ∈ C (1)

I Matched filtering v with filter h ∈ CN yields y = hHv. Write
y = ys + yn, where ys = αhHc and yn = hHn. SINR is
given as:

SINR =
|ys|2

|yn|2
=
|α|2|hHc|2

|hHn|2
=
|α|2|hHc|2

hH nnH︸︷︷︸
=M

h
(2)

I To maximize SINR w.r.t. h, we choose h = M−1c, which
yields SINR = |α|2cHM−1c
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Problem formulation

I Introduce constrained bandwidths {Ωk}k∈{1,2,...,K}, where
Ωk =

[
f k
1 , f

k
2
]
. The energy c radiates to constrained

bandwidths is (see e.g. [3]):

K∑
k=1

wk

∫
Ωk

|FN{c}|2df = cHRIc, (3)

where {wk}Kk=1 are non-negative weights, FN{c} stands
for the discrete-time Fourier transform of c given as
FN{c} ,

∑N
k=1 c[k ]e−j2πkf , and RI ,

∑K
k=1 wkRk

I with
[Rk

I ]m,l = (ej2πf k
2 (m−l) − ej2πf k

1 (m−l))/ej2π(m−l), if m 6= l , and
[Rk

I ]m,l = f k
2 − f k

1 , if m = l .
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Problem formulation

I If radar code energy ‖c‖2 is unit constrained and required
to be in similarity region with reference code c0 alongside
radiation energy constraint cHRIc ≤ EI , SINR maximization
problem can be written:

P1 :


max

c
|α|2 cHM−1c (4a)

s.t. : ‖c‖2 = 1 (4b)
cHRIc ≤ EI (4c)
‖c− c0‖2 ≤ ε (4d)
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Problem formulation

I P1 is equal to:

P(1)
1 :


min

c
−cHRc (5a)

s.t. : ‖c‖2 = 1 (5b)
cHRIc ≤ EI (5c)
‖c− c0‖2 ≤ ε (5d)

where c,c0 ∈ CN and RI,R = M−1 ∈ CN×N
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Majorization-Minimization step
I Due to independence of real and imaginary components

we can write c,c0,R and RI as:

R =

[
Re{R} −Im{R}
Im{R} Re{R}

]
, c =

[
Re{c}
Im{c}

]
and c0 =

[
Re{c0}
Im{c0}

]
.

I Let us use use surrogate Q = µI− R � 0, µ > 0 to
upper-bound objective. We get real-valued optimization
problem P2:

P2 :


min

c
cT Qc (6a)

s.t. : ‖c‖2 = 1 (6b)
cT RIc ≤ EI (6c)
‖c− c0‖ ≤ ε (6d)

where c,c0 ∈ R2N and Q,RI ∈ R2N×2N
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Apply ADMM to P2

I To allow separability of cT Qc, let us introduce slack
variable z with constraint c = z. Augmented Lagrangian
Lρ(c, z,λ) for minimization problem minc cT Qc s.t.: c = z:

Lρ(c, z,λ) = cT Qc + λT (c− z) +
ρ

2
‖c− z‖2. (7)

I ADMM-steps for P2:
ck+1 = arg min

c
Lρ (c, zk ,λk ) (8a)

zk+1 = arg min
z

Lρ (ck+1, z,λk ) (8b)

λk+1 = λk + ρ (ck+1 − zk+1) , (8c)

I Next c-variable update and z-variable update are solved.
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c-variable update
I c-variable update (8a) can be written as:

ck+1 = arg min
c

Lρ (c, zk ,λk ) = arg min
c

{
cT Qc + (λ− ρz)T c

}
= arg min

c
h(c) |s.t. ‖c‖2 = 1, ‖c− c0‖2 ≤ ε. (9)

I Objective function h(c) is continuously differentiable and
∇ch is L-Lipschitz continuous. To minimize h(c) we use
gradient descent:

ck+1 = ck −
1
L

((
Q + QT

)
ck + (λ− ρz)

)
, (10)

where Lipschitz constant can be found by noticing:

|∇ch(κ)−∇ch(c)| =
∣∣∣(Q + QT

)
(κ− c)

∣∣∣ ≤ L |κ− c|

⇒

∣∣∣∣∣∣
2N∑

p=1

(
Q[i,p] + QT

[i,p]

)∣∣∣∣∣∣ ≤ L,∀i = 1, · · · ,2N
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c-variable update

I Gradient descent yields updated c that has ‖c‖22 6= 1 and
possibly ‖c− c0‖ ≥ ε.

I Denote Θ = {c ∈ R2N | ‖c‖2 = 1 and ‖c− c0‖2 ≤ ε, for
some c0 ∈ R2N}

I Cheap way to project c back to unitary region is to divide
updated c by its L2-norm:

ĉk+1 = ck+1/‖ck+1‖ (11)
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c-variable update

I Next ĉk+1 is rotated to region Θ with
steps introduced in Algorithm 1.

Algorithm 1: Rotate c toward
c0 as long as region ‖c − c0‖ ≤
ε is reached

1 function RotateVector(c,c0, α
′, ε);

Input : c, c0, α′ and ε
Output : c

2 while ‖c− c0‖ > ε do
3 c̃ = c0−projc(c0) = c0− cH

0 ,c
‖c‖2 c;

4 e = c̃
‖c̃‖ , c∗ = c + α′e,

c = c∗

‖c∗‖ ;
5 end

〚c〛2 =1

〚c- c0〛
2 ≤ϵ

c0�c
*

c c
�

c0

α*e

α*e

Rotation of c towards c0
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c-variable update
I The combination of steps (10), (11) and Algorithm 1 can be

shown to be solution steps to projected gradient step for
problem minc h(c) subject to c ∈ Θ:

yk+1 = ck −
1
L
∇h(ck ) (12a)

ck+1 = min
c∈Θ

∥∥yk+1 − c
∥∥ . (12b)

I By using angular coordinates φ ∈ R2N−1 step (12b) can be
written as: {

φk+1 = arg min
φ∈Ω

‖φ∗ − φ‖ (13a)

ck+1 = c(φk+1). (13b)

where Ω =
{
φ ∈ R2N−1 | ‖c(φ)− c0(φ)‖2 ≤ ε

}
and

φ∗ = arg minφ h(c(φ)).
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z-variable update

I z-variable update (8b) can be written as:

zk+1 = arg min
z

Lρ (ck+1, z,λk )

= arg min
z

{
λT (c− z) +

ρ

2
‖c− z‖2

}
= arg min

z

{∥∥∥∥z− (c +
1
ρ
λ)

∥∥∥∥2
}
|s.t. zT RIz ≤ EI. (14)

I Lagrangian for (14) is given as:

L(z, γ) =

∥∥∥∥z− (c +
1
ρ
λ)

∥∥∥∥2

+ γ(zT RIz− EI). (15)
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z-variable update
I Karush-Kuhn-Tucker (KKT) conditions for the minimization

problem (14): 

∇zL(z∗, γ∗) = 0 (16a)
γ∗ ≥ 0 (16b)
γ∗((z∗)T RIz∗ − EI) = 0 (16c)
(zT RIz− EI) ≤ 0 (16d)
∇zzL(z∗, γ∗) � 0, (16e)

I By (16a) and (16c):

∇zL(z∗, γ∗) = 0⇒ (I + γ∗RI) z∗ = c +
1
ρ
λ, (17)

(z∗)T RIz∗ − EI = 0, (18)

where z∗ and γ∗ denotes critical points of Lagrangian
L(z, γ).
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z-variable update
I Now (17) can be written as iteration step (19):

zk+1 = (I + γk+1RI)
−1
(

c +
1
ρ
λ

)
=

(
I +

2N∑
i=1

γk+1σi

1 + γk+1σi
pip

T
i

)(
c +

1
ρ
λ

)
. (19)

I γk+1 > 0 can be found as the solution to (18):

zT
k+1RIzk+1 = EI ⇔

2N∑
i=1

aiσi

(1 + γσi)2 − EI = 0 (20)

where ai = (pT
i (c + 1

ρλ))2, σi is i ’th eigenvalue and pi
corresponding eigenvector of RI. Equation (20) can be
efficiently solved by using Newton’s method.
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Proposed algorithm
I Collect c and z-variable updates to get final algorithm:

Algorithm 2: MM-algorithm
1 function MM(Q,c0,RI ,EI , ε,K ′);

Input : Q = µI− R � 0, c0, RI , EI , ε and K ′

Output : c
2 Initialize c, z and λ;
3 for k = 1, k ≤ K ′, k ++ do
4 ĉk+1 = ck − 1

L

((
Q + QT

)
ck + (λ− ρz)

)
;

5 c̃k+1 = ĉk+1
‖ĉk+1‖ ;

6 ck+1 = RotateVector(c̃k+1,c0, α, ε);

7 Solve
2N∑
i=1

aiσi
(1+γσi )2 − EI = 0 for γk+1 > 0;

8 zk+1 =

(
I +

2N∑
i=1

γk+1σi
1+γk+1σi

pipT
i

)(
c + 1

ρλ
)

;

9 λk+1 = λk + ρ(ck+1 − zk+1);
10 end
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Time-Complexity graph
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Simulation example
I Let us use Algorithm 2 in example environment. Consider

radar with bandwidth of 6 GHz to be sampled at sampling
frequency of fs = 12GHz.

I Fast-time radar code has length T = 1µs (i.e. N = 12000).
I The radar operates in spectrally busy environment with

seven constrained bandwidths
{Ωk}7k=1 = {[0.0000, 0.0617], [0.0700, 0.1247],
[0.1526, 0.2540], [0.3086, 0.3827], [0.4074, 0.4938],
[0.6185, 0.7600], [0.8200, 0.9500]}.

I Covariance matrix is modelled as:

M = σ0I +
K∑

k=1

σI,k

∆fk
Rk

I +

KJ∑
k=1

σJ,kRJ,k (21)

I For reference signal we use linearly modulated signal
c0 = ej2π(f∆t+f0)t , with carrier frequency f0 = 1.8GHz and
frequency range f∆ = 3.6GHz/µs.
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Simulation example
I σ0 = 0dB (thermal noise level)
I K = 7 (number of licensed radiators)
I σI,k = 10dB, ∀k ∈ {1, ...,K} (energy of coexisting telecom

network operating on normalized frequency band
Ωk = [f k

1 , f
k
2 ])

I ∆fk = f k
2 − f k

1 , ∀k ∈ {1, ...,K} (bandwidth associated with
the k’th licensed radiator)

I KJ = 2 (number of active and unlicensed narrowband
jammers)

I σJ,k =

{
50dB, k = 1
40dB, k = 2,

(energy of active jammers)

I RJ,k = rJ,k rH
J,k , k = 1, ...,KJ (normalized disturbance

covariance matrix of the k ’th active unlicensed jammer)
I rJ,k = ej2πfj,k n/fs , fJ,1/fs = 0.7 and fJ,2/fs = 0.75
I wk = 1,∀k ∈ {1, ...,7} (weights in RI).
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Frequency spectrum and comparison to other
method [3]
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SINR convergence
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Ambiguity function



July 5, 2018
23/23

References
[1] W. Rowe, P. Stoica, and J. Li, “Spectrally constrained waveform design,”

IEEE Signal Process. Mag., vol. 31, no. 3, pp. 157–162, 2014.

[2] A. Aubry, V. Carotenuto and A. De Maio, “Forcing multiple spectral
compatibility constraints in radar waveforms,” IEEE Signal Processing
Letters, vol. 23, no. 4, pp. 483–487, 2016.

[3] A. Aubry, A. De Maio, M. Piezzo and A. Farina, “Radar waveform design
in a spectrally crowded environment via nonconvex quadratic
optimization,” IEEE Transactions on Aerospace and Electronic Systems,
vol. 50, no. 2, pp. 1138–1152, 2014.

[4] S. Boyd, N. Parikh, E. Chu, B. Peleato and J. Eckstein, “Distributed
optimization and statistical learning via the alternating direction method of
multipliers,” Foundations and Trends in Machine Learning, vol. 3, no. 1,
pp. 1–122, 2011.

[5] D. R. Hunter and K. Lange, “A tutorial on MM algorithms,” Amer. Statist.,
vol. 58, no. 1, pp. 30–37, 2004.


