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Introduction

» Recently in radar systems waveform design in spectrally
dense environment [1] has aroused noticeable interest

» Solution methods exist for the problem (see e.g. [2], [3])
but they are computationally inefficient

» When radar system operates at GHz level radar code
dimension becomes large, need for computationally
efficient solution methods

» Here we develop new computationally efficient method to
design transmitter waveform in spectrally dense
environment

» New method is based on ADMM algorithm [4] alongside
Majorization-Minimization step [5]
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Problem formulation

» Similarly to [3], denote transmitted fast-time radar code
vector by ¢ and fast-time observation signal by v:

c=(c[1],¢c2],...cI[N])",v=ac+n, c,ve CN acC (1)

» Matched filtering v with filter h € CN yields y = hf'v. Write
¥ = ¥s + yn, where ys = ohfc and y, = h"'n. SINR is

given as:
SINR = s _ laPIhel? _ Jafaep
|ynl? lhHn2 h" nn"h
=M

» To maximize SINR w.r.t. h, we choose h = M~ ¢, which
yields SINR = |a[2c"M~ ¢
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Problem formulation

» Introduce constrained bandwidths {Qy }xc(1.2,... k), Where

Qy = [fK, 1X]. The energy c radiates to constrained
bandwidths is (see e.g. [3]):

K
S w / | File}[20f = cHRyc, 3)
k=1 X

where {w,}K_, are non-negative weights, Fy{c} stands
for the discrete-time Fourier transform of ¢ given as
Fn{ct £ YN, clkle 2™ and R £ YK . wRl with
[le]m,/ _ (ej27rf2k(mfl) _ e/'27rf1k(mfl))/e/'27r(m—l), if m+ 1/, and
R m) =5 — i, it m=1.
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Problem formulation

» If radar code energy |/c||? is unit constrained and required
to be in similarity region with reference code ¢ alongside
radiation energy constraint ¢”R,c < E;, SINR maximization
problem can be written:

max lal?2cFM~"e

CHR|C < E

(

Py st Ic)|? =1 (4b
(

le —col® < e (
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Problem formulation

» Py is equal to:

min —c"Re
Cc
P, ) st e]|? = 1
c¢"Ric < E
lc —col* <e

where ¢,cg € CNand R,R=M"" € CN*N
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Majorization-Minimization step

» Due to independence of real and imaginary components
we can write ¢, ¢g, R and R, as:

R— Re{R} —Im{R}] _[
~ |[Im{R} Re{R}|’~ |Im{c}

» Letus use use surrogateQ=pul—R >0, x> 0to
upper-bound objective. We get real-valued optimization

Im{cp}

problem Ps:
mcin c’Qc (6a)
py: l st llef2=1 (6b)
c¢'Ric < F (6¢)
[e —col <€ (6d)

where ¢, ¢y € R?N and Q, R| € R2Vx2N

Re{c}] and ¢y — [Re{co}] .
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Apply ADMM to P,
» To allow separability of ¢’ Qc, let us introduce slack
variable z with constraint ¢ = z. Augmented Lagrangian
L,(c,z, A) for minimization problem ming¢ c’Qcst:c=2z:

L,(c,z,\) :cTQc+>\T(c—z)+g||c—zH2. (7)

» ADMM-steps for Ps:

Ck41 = argmin Lp (C,Zk,)\k) (8a)
[+

Z) 4 = argmin L, (Ckt+1,2, Ak) (8b)
z

Akt = Ak + p(Chpt — Zky1), (8c)

» Next c-variable update and z-variable update are solved.
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c-variable update
» c-variable update (8a) can be written as:

Ck+1 = argmin L, (€, 2k, Ak) = arg min {CTQC + (A — pZ)Tc}
c C
—argminh(c) [st flc|?=1, [c—col?<e  (9)
c

» Objective function h(c) is continuously differentiable and
Vehis L-Lipschitz continuous. To minimize h(c) we use
gradient descent:

_ 1 T
Ck+1—0k—z<(0+0 )Ck+()\—PZ)>, (10)
where Lipschitz constant can be found by noticing:
[Veh(x) — Veh(e) = |(@+QT) (x —¢)| < LIk ¢

2N

> (Q[Lp] + Qﬁp])

= |

= <LVi=1,---,2N
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c-variable update

» Gradient descent yields updated c that has |/c||3 # 1 and
possibly ||c — cp|| > .

» Denote © = {c e R?N | ||c||? =1 and |jc — ¢g||? < ¢, for
some ¢g € RV}

» Cheap way to project ¢ back to unitary region is to divide
updated ¢ by its L?-norm:

Ckr1 = Ckp1/]/Chkatl (11)
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c-variable update

Rotation of ¢ towards ¢y

Next €4, is rotated to region © with
steps introduced in Algorithm 1.

Algorithm 1: Rotate ¢ toward
Co as long as region ||c — ¢p|| <
¢ is reached
function RotateVector(c, ¢g, o, €);
Input :c,cg, o’ ande
Output :c
while ||c — ¢y|| > e do
~ H
€ = ¢o—projs(€o) = €o— %c;
e= HgT”,c* =c+d'e,

c= ¢ :
lle=1i

end
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c-variable update
» The combination of steps (10), (11) and Algorithm 1 can be

shown to be solution steps to projected gradient step for
problem min¢ h(c) subject to ¢ € ©:
1
Yir1 = Ck — ZVh(ck) (12a)
Ch1 = Min Vit —¢l]- (12b)

» By using angular coordinates ¢ € R?N~" step (12b) can be
written as:

{ $k+1 = argmin|[¢” — || (13a)
$eQ
Ck+1 = C(Pk+1)- (13b)

where Q = {¢ € R2V=1 | |lc(¢) — co(9)||*> < €} and
¢* = argming h(c(¢)).
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z-variable update
» z-variable update (8b) can be written as:

2,1 = argmin L, (Ck41,2Z, Ak)
z

—argmin{A'(c—z —FBC—Z2
gmin {\(e ~2) + lle — 2|}

= argmin {
z

» Lagrangian for (14) is given as:

1
zZ—(C+—-X
( p)

2
} st. 2’ Rz < E. (14)

2

L(z,7) = +7(z"Riz - E). (15)

1
z—(C+—A
( p)
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z-variable update

» Karush-Kuhn-Tucker (KKT) conditions for the minimization
problem (14):

(VoL(Z",7") =0 (16a)
>0 (16b)
v ((2*)"Riz* — E)) =0 (16¢)
(z'Riz—E)<0 (16d)
VzL(z*,7*) = 0, (16e)

» By (16a) and (16c¢):

1
Vol(z5,v)=0= (1+~+*R)z* =¢c + ;)\, (17)
(z)"Riz* — E =0, (18)

where z* and ~* denotes critical points of Lagrangian

L(z,7).
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z-variable update
» Now (17) can be written as iteration step (19):

_ 1
21 = (14 1R <C + >\>

p
|+Z _Ikt191_p pT <c+1A>. (19)
1+ Y106 P
> Yk+1 > 0 can be found as the solution to (18):
T ajoj _
z] Rz =E < Z (Erse E =0 (20)

where a; = (p/ (¢ + %A))2, oj is i'th eigenvalue and p;
corresponding eigenvector of R|. Equation (20) can be
efficiently solved by using Newton’s method.
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Proposed algorithm
» Collect ¢ and z-variable updates to get final algorithm:

Algorithm 2: MM-algorithm

1 function MM(Q, ¢y, Ry, Ej, €, K');
Input :Q=ul—-R>0,c¢q, R, E;, cand K’
Output :c

2 Initialize ¢, z and X;

sfork=1,k<K' k++do

4 ck+1—ck—*(<Q+QT)Ck+()\ 2));

Gk .
5 | Cot = ey ~
6 Ckit1 = RotateVector(ck+1 , €0, Q, €);

7 Solve Z i a"" — E; =0 for yx41 > 0;

o | 2 ('+ S pp] ) (o4 1A);
=1

9 Akt = Ak + p(Cri1 — 2k 41);
40 er\rl
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Time-Complexity graph
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Simulation example

» Let us use Algorithm 2 in example environment. Consider
radar with bandwidth of 6 GHz to be sampled at sampling
frequency of fs = 12GHz.

» Fast-time radar code has length T = 1us (i.e. N =12000).

» The radar operates in spectrally busy environment with
seven constrained bandwidths
{Q%}7_, = {[0.0000, 0.0617],[0.0700, 0.1247],

[0.1526, 0.2540],[0.3086, 0.3827],[0.4074, 0.4938],
[0.6185, 0.7600], [0.8200, 0.9500]}.
» Covariance matrix is modelled as:

Ky
_Uol—l—ZJR +ZO’J’kRJ7K (21)
k=1

» For reference signal we use linearly modulated signal
co = e2(at+h)t with carrier frequency f, = 1.8GHz and
frequency range fa = 3.6GHz/us
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Simulation example

» oo = 0dB (thermal noise level)

» K =7 (number of licensed radiators)

» o1k = 10dB,Vk € {1,..., K} (energy of coexisting telecom
network operating on normalized frequency band
Qe =[5, )

> Af = f — ff,Vk € {1,...,K} (bandwidth associated with
the k’th licensed radiator)

» K; =2 (number of active and unlicensed narrowband

jammers)
> _ )90dB, k=1 (energy of active jammers)
7= \4odB, k=2, Y .

» Ry =ryrt, k=1,.., K, (normalized disturbance
covariance matrix of the k’th active unlicensed jammer)

> gk = ei27rf/vkn/fs, fJ7‘|/f5 =0.7 and fJ,g/fs =0.75

» wyx =1,Vk € {1,...,7} (weights in R)).
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Frequency spectrum and comparison to other

method [3]
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SINR convergence
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Ambiguity function
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