

Approximate Message Passing in Coded Aperture Snapshot Spectral Imaging

Jin Tan, Yanting Ma, Hoover Rueda, Dror Baron, and Gonzalo R. Arce

> Orlando, FL December 15, 2015

Supported by NSF and ARO

Hyperspectral Images

RGB image

Image slices at different wavelengths

3D cube

Hyperspectral Images

- Obtain spectrum information of a scene
- Applications include
 - Medical imaging

Geology

Astronomy

Remote sensing

Conventional Hyperspectral Imaging

- Acquire and store entire image in all spectrum bands
- Disadvantages
 - Long imaging time
 - Large storage

Conventional Hyperspectral Imaging

- Acquire and store entire image in all spectrum bands
- Disadvantages
 - Long imaging time
 - Large storage

Better imaging system?

Compressive Hyperspectral Imaging

Coded Aperture Snapshot Spectral Imaging (CASSI) [Wagadarikar et al. 2008]

Compressive Sensing Formulation

$$g = Hf_0 + z$$

Multi-shot CASSI [Arguello et al. 2011]

measurement rate $\approx 2/L$, L: #spectrum bands

Higher Order CASSI [Arguello et al. 2013]

measurement rate $\approx 2/L$, L: #spectrum bands

Challenges

- Highly compressed measurements
- Structured sensing matrix
- Large signal dimension (need fast algorithm)

Challenges

- Highly compressed measurements
- Structured sensing matrix
- Large signal dimension (need fast algorithm)

no parameter tuning

runtime

Approximate Message Passing [Donoho et al. 2009]

Approximate Message Passing (AMP)

compressive sensing $g = Hf_0 + z \in \mathbb{R}^m$

Approximate Message Passing (AMP)

 $\begin{array}{ll} \mbox{compressive sensing} & \longrightarrow & \mbox{denoising} \\ g = Hf_0 + z \in \mathbb{R}^m & q^t = f_0 + v^t \in \mathbb{R}^n \end{array}$

If sensing matrix H is i.i.d. Gaussian, asymptotically

- Noise v^t uncorrelated with input f_0
- Noise v^t distributed as i.i.d. Gaussian $\mathcal{N}(0, \sigma_t^2)$
- Noise variance σ_t^2 can be accurately estimated

Approximate Message Passing (AMP)

 $\begin{array}{ll} \mbox{compressive sensing} & \longrightarrow & \mbox{denoising} \\ g = Hf_0 + z \in \mathbb{R}^m & q^t = f_0 + v^t \in \mathbb{R}^n \end{array}$

If sensing matrix H is i.i.d. Gaussian, asymptotically

- Noise v^t uncorrelated with input f_0
- Noise v^t distributed as i.i.d. Gaussian $\mathcal{N}(0, \sigma_t^2)$
- Noise variance σ_t^2 can be accurately estimated

May break down for structured matrix!

AMP Pseudocode

Initialize $f^{t=0} \leftarrow 0$ At iteration t, do Residual: $r^{t} \leftarrow g - Hf^{t} + \frac{r^{t-1}}{m/n} \langle \eta'_{t-1}(f^{t-1} + H^{T}r^{t-1}) \rangle$ Noisy signal: $q^{t} \leftarrow f^{t} + H^{T}r^{t} (= f_{0} + v^{t})$ Noise (\mathbf{v}^{t}) level: $\sigma_{t}^{2} \leftarrow ||\mathbf{r}^{t}||_{2}^{2}/m$ Denoising: $f^{t+1} \leftarrow \eta_t(q^t; \sigma_t^2)$

AMP Pseudocode

Initialize $f^{t=0} \leftarrow 0$ **Onsager correction** At iteration t, do Residual: $r^{t} \leftarrow g - Hf^{t} + \frac{r^{t-1}}{m/n} \langle \eta'_{t-1} (f^{t-1} + H^{T}r^{t-1}) \rangle$ Noisy signal: $q^{t} \leftarrow f^{t} + H^{T}r^{t} (= f_{0} + v^{t})$ Noise (\mathbf{v}^t) level: $\sigma_t^2 \leftarrow ||\mathbf{r}^t||_2^2/m$ Denoising: $f^{t+1} \leftarrow \eta_t(q^t; \sigma_t^2)$

AMP for Hyperspectral Image Recovery

• 2D wavelet + 1D discrete cosine transform (DCT)

- 2D wavelet + 1D discrete cosine transform (DCT)
- Assume Var($\theta_{v,i}^t$) = σ_t^2 , i = 1,..., n

- 2D wavelet + 1D discrete cosine transform (DCT)
- Assume Var($\theta_{v,i}^t$) = σ_t^2 , i = 1,..., n
- Empirical variance σ_i^2 and mean μ_i of $\theta_{f_0,i}$ estimated using θ_q^t in wavelet subband

- 2D wavelet + 1D discrete cosine transform (DCT)
- Assume Var($\theta_{v,i}^t$) = σ_t^2 , i = 1,..., n
- Empirical variance σ_i^2 and mean μ_i of $\theta_{f_0,i}$ estimated using θ_q^t in wavelet subband

• Wiener filter:
$$\theta_{f,i}^{t+1} = \frac{\sigma_i^2}{\sigma_i^2 + \sigma_t^2} \cdot (\theta_{q,i}^t - \mu_i) + \mu_i$$

Divergence Problem

- Structured matrix H
- Inaccurate model assumption in denoising problem

Iteration t

AMP-3D-Wiener

Lego toy example

Original

- Lego toy example
- 2 shots; complementary coded aperture; 20dB noise
- No parameter tuning for AMP-3D-Wiener

- Lego toy example
- 2 shots; complementary coded aperture; 20dB noise

- Lego toy example
- 2-12 shots; complementary coded aperture; 20dB noise

Natural scenes [personalpages.manchester.ac.uk/staff/d.h.foster/]

AMP reconstructs better in all tested scenes.

SNR	15 dB			20 dB		
Algorithm	AMP	GPSR	TwIST	AMP	GPSR	TwIST
Scene 1	30.48	28.43	30.17	30.37	28.53	30.31
Scene 2	27.34	24.71	27.03	27.81	24.87	27.35
Scene 3	33.13	29.38	31.69	33.12	<mark>29.4</mark> 4	31.75
Scene 4	32.07	26.99	31.69	32.14	27.25	32.08
Scene 5	27.44	24.25	26.48	27.83	24.60	26.85
Scene 6	29.15	24.99	25.74	30.00	25.53	26.15
Scene 7	36.35	33.09	33.59	37.11	33.55	34.05
Scene 8	32.12	28.14	28.22	32.93	28.82	28.69

Summary

- **Problem**: Hyperspectral image reconstruction in CASSI
- **Algorithm**: Approximate message passing with adaptive Wiener filter in 2D wavelet + 1D DCT domain

Challenges:

- Highly compressed measurements
- Structured sensing matrix
- Results:
 - Improved PSNR and runtime
 - No parameter tuning

Future Work

- Why simple denoiser helps convergence?
- Improve AMP convergence
 - → better denoiser (e.g. BM4D [Maggioni et al. 2012])

Thank you!